112
Views
56
CrossRef citations to date
0
Altmetric
Original Articles

An electron microscope study of deformation and crack propagation in (α2 + γ) titanium aluminides

, &
Pages 341-360 | Received 08 May 1994, Accepted 06 Jan 1995, Published online: 27 Sep 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

T.E.J. Edwards. (2018) Recent progress in the high-cycle fatigue behaviour of γ-TiAl alloys. Materials Science and Technology 34:16, pages 1919-1939.
Read now
F. Appel . (2005) An electron microscope study of mechanical twinning and fracture in TiAl alloys. Philosophical Magazine 85:2-3, pages 205-231.
Read now
Kyosuke Kishida, Haruyuki Inui & Masaharu Yamaguchi. (1998) Deformation of lamellar structure in TiAl-Ti3Al two-phase alloys. Philosophical Magazine A 78:1, pages 1-28.
Read now

Articles from other publishers (53)

Hao Deng, Yong-Qiang Wei, Jun Tang, Ai-Jun Chen, Long-Qing Chen & Zu-Xi Xia. (2018) A high-Nb–TiAl alloy with ultrafine-grained structure fabricated by cryomilling and spark plasma sintering. Rare Metals 42:5, pages 1678-1685.
Crossref
Rong Fu, Zhiyuan Rui, Ruicheng Feng, Yun Dong & Xin Lv. (2022) Effects of γ/γ lamellar interfaces on translamellar crack propagation in TiAl alloys. Journal of Alloys and Compounds 918, pages 165616.
Crossref
Jiyao Liu & Laiqi Zhang. (2021) Molecular Dynamics Simulation of the Tensile Deformation Behavior of the γ(TiAl)/α2(Ti3Al) Interface at Different Temperatures. Journal of Materials Engineering and Performance 31:2, pages 918-932.
Crossref
Anupam Neogi & Rebecca Janisch. (2021) Twin-boundary assisted crack tip plasticity and toughening in lamellar -TiAl . Acta Materialia 213, pages 116924.
Crossref
Anupam Neogi, Masud Alam, Alexander Hartmaier & Rebecca Janisch. (2020) Anisotropic failure behavior of ordered intermetallic TiAl alloys under pure mode-I loading. Modelling and Simulation in Materials Science and Engineering 28:6, pages 065016.
Crossref
Thomas Edward James Edwards, Fabio Di Gioacchino & William John Clegg. (2019) An experimental study of the polycrystalline plasticity of lamellar titanium aluminide. International Journal of Plasticity 118, pages 291-319.
Crossref
Wen Daosheng, Kong Beibei, Wang Shouren, Shan Debin, Qiao Yang & Zong Yingying. (2019) Mechanism of hydrogen-restrained crack propagation and practical application research of thermohydrogen treatment in a TiAl-based alloy. International Journal of Hydrogen Energy 44:13, pages 6938-6948.
Crossref
Seong-Woong Kim & Jeoung Han Kim. (2018) In-situ observations of deformation twins and crack propagation in a CoCrFeNiMn high-entropy alloy. Materials Science and Engineering: A 718, pages 321-325.
Crossref
Fritz Appel, Jonathan D.H. Paul, Peter Staron, Michael Oehring, Otmar Kolednik, Jozef Predan & Franz Dieter Fischer. (2018) The effect of residual stresses and strain reversal on the fracture toughness of TiAl alloys. Materials Science and Engineering: A 709, pages 17-29.
Crossref
F. Appel, R. Wagner & Vinod Kumar. 2017. Reference Module in Materials Science and Materials Engineering. Reference Module in Materials Science and Materials Engineering.
F. Appel, H. Clemens & F.D. Fischer. (2016) Modeling concepts for intermetallic titanium aluminides. Progress in Materials Science 81, pages 55-124.
Crossref
Ulrich Fröbel & Andreas Stark. (2014) Microstructural Evolution in Gamma Titanium Aluminides During Severe Hot-Working. Metallurgical and Materials Transactions A 46:1, pages 439-455.
Crossref
Fritz Appel, Jonathan David Heaton Paul & Michael Oehring. 2011. Gamma Titanium Aluminide Alloys. Gamma Titanium Aluminide Alloys 573 682 .
Fritz Appel, Jonathan David Heaton Paul & Michael Oehring. 2011. Gamma Titanium Aluminide Alloys. Gamma Titanium Aluminide Alloys 357 401 .
Tao Wang, Hongzhen Guo, Yanwei Wang, Xiaona Peng, Yan Zhao & Zekun Yao. (2011) The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy. Materials Science and Engineering: A 528:6, pages 2370-2379.
Crossref
X. Lu, X.B. He, B. Zhang, L. Zhang, X.H. Qu & Z.X. Guo. (2009) Microstructure and mechanical properties of a spark plasma sinteredTi–45Al–8.5Nb–0.2W–0.2B–0.1Y alloy. Intermetallics 17:10, pages 840-846.
Crossref
Sharvan Kumar & William A. Curtin. (2007) Crack interaction with microstructure. Materials Today 10:9, pages 34-44.
Crossref
S.W. Kim, K.S. Kumar, M.H. Oh & D.M. Wee. (2007) Crack propagation behavior in TiAl–Nb single and Bi-PST crystals. Intermetallics 15:7, pages 976-984.
Crossref
F. Appel & H. Clemens. (2006) Intermetallische Titanaluminide: Werkstoffe für hohe TemperaturenIntermetallic titanium aluminides: Materials for high temperatures. BHM Berg- und Hüttenmännische Monatshefte 151:5, pages 195-199.
Crossref
Sung G. Pyo & Nack J. Kim. (2005) Role of Interface Boundaries in the Deformation Behavior of TiAl Polysynthetically Twinned Crystal: In situ Transmission Electron Microscopy Deformation Study. Journal of Materials Research 20:7, pages 1888-1901.
Crossref
K. Xia. 2005. The Deformation and Processing of Structural Materials. The Deformation and Processing of Structural Materials 164 202 .
Y Wu & S.K Hwang. (2004) The effect of yttrium on microstructure and dislocation behavior of elemental powder metallurgy processed TiAl-based intermetallics. Materials Letters 58:15, pages 2067-2072.
Crossref
S.W. Kim, P. Wang, M.H. Oh, D.M. Wee & K.S. Kumar. (2004) Mechanical properties of Si- and C-doped directionally solidified TiAl–Nb alloys. Intermetallics 12:5, pages 499-509.
Crossref
P Wang, N Bhate, K.S Chan & K.S Kumar. (2003) Colony boundary resistance to crack propagation in lamellar Ti–46Al. Acta Materialia 51:6, pages 1573-1591.
Crossref
F. Appel & M. Oehring. 2002. Titan und Titanlegierungen. Titan und Titanlegierungen 39 103 .
F. Appel, U. Christoph & M. Oehring. (2002) Creep deformation in two-phase titanium aluminide alloys. Materials Science and Engineering: A 329-331, pages 780-787.
Crossref
J.J.M. Arata, K.S. Kumar, W.A. Curtin & A. Needleman. (2002) Crack growth across colony boundaries in binary lamellar TiAl. Materials Science and Engineering: A 329-331, pages 532-537.
Crossref
C.Y. Nam, D.M. Wee, P. Wang & K.S. Kumar. (2002) Microstructure and toughness of nitrogen-doped TiAl alloys. Intermetallics 10:2, pages 113-127.
Crossref
F. Appel & R. Wagner. 2001. Encyclopedia of Materials: Science and Technology. Encyclopedia of Materials: Science and Technology 4246 4264 .
F. Appel, M. Oehring & R. Wagner. (2000) Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics 8:9-11, pages 1283-1312.
Crossref
Y.H Lu, Y.G Zhang, L.J Qiao, Y.-B Wang, C.Q Chen & W.Y Chu. (2000) In-situ TEM study of fracture mechanisms of polysynthetically twinned (PST) crystals of TiAl alloys. Materials Science and Engineering: A 289:1-2, pages 91-98.
Crossref
Fritz Appel. (2011) Twinning in Crack Tip Plasticity of Two-Phase Titanium Aluminides. MRS Proceedings 646.
Crossref
Fritz Appel, Helmut Clemens & Michael Oehring. (2011) Recent Advances in Development and Processing of Titanium Aluminide Alloys. MRS Proceedings 646.
Crossref
Fritz Appel & U. Christoph. (1999) Coherency stresses and interface-related deformation phenomena in two-phase titanium aluminides. Intermetallics 7:10, pages 1173-1182.
Crossref
F. Appel, U. Sparka & R. Wagner. (1999) Work hardening and recovery of gamma base titanium aluminides. Intermetallics 7:3-4, pages 325-334.
Crossref
U. Christoph, M. Oehring & F. Appel. (2011) Interface Related Strength Phenomena in Two-Phase Titanium Aluminides. MRS Proceedings 586.
Crossref
J.G. Wang, L.M. Hsiung & T.G. Nieh. (1998) Formation of deformation twins in a crept lamellar TiAl alloy. Scripta Materialia 39:7, pages 957-962.
Crossref
F. Appel & R. Wagner. (1998) Microstructure and deformation of two-phase γ-titanium aluminides. Materials Science and Engineering: R: Reports 22:5, pages 187-268.
Crossref
B Dogan, H Clemens & K.-H Schwalbe. (1998) Crack Initiation and Crack Growth Resistance of Ti-48Al-2Cr Sheet Material. Scripta Materialia 38:7, pages 1041-1049.
Crossref
M. Oehring, U. Lorenz, R. Niefanger, F Appel, H.-G. Brokmeier, R. Wagner, H. Clemens & N. Eberhardt. (2011) Mechanical Anisotropy of a Gamma Titanium Aluminide Alloy After Hot Extrusion. MRS Proceedings 552.
Crossref
F. Appel, U. Lorenz, U. Sparka & R. Wagner. (1998) Effects of dislocation dynamics and microstructure on crack growth mechanisms in two-phase titanium aluminide alloys. Intermetallics 6:7-8, pages 603-605.
Crossref
M.H. Yoo. (1998) Twinning and mechanical behavior of titanium aluminides and other intermetallics. Intermetallics 6:7-8, pages 597-602.
Crossref
U. Lorenz, F. Appel & R. Wagner. (1997) Dislocation dynamics and fracture processes in two-phase titanium aluminide alloys. Materials Science and Engineering: A 234-236, pages 846-849.
Crossref
D. Häussler, U. Messerschmidt, M. Bartsch, F. Appel & R. Wagner. (1997) In situ high-voltage electron microscope deformation study of a two-phase (α2 + γ) Ti-Al alloy. Materials Science and Engineering: A 233:1-2, pages 15-25.
Crossref
F. Appel, U. Lorenz, M. Oehring, U. Sparka & R. Wagner. (1997) Thermally activated deformation mechanisms in micro-alloyed two-phase titanium amminide alloys. Materials Science and Engineering: A 233:1-2, pages 1-14.
Crossref
J.G. Wang, L.C. Zhang, G.L. Chen & H.Q. Ye. (1997) Formation of stress-induced 9R structure in a hot-deformed Ti-45Al-10Nb alloy. Scripta Materialia 37:2, pages 135-140.
Crossref
M.A. Morris & M. Leboeuf. (1997) Grain-size refinement of γ-Ti-Al alloys: effect on mechanical properties. Materials Science and Engineering: A 224:1-2, pages 1-11.
Crossref
M. H. Yoo & C. L. Fu. (2011) Interfacial Properties and Mechanical Behavior of Titanium Aluminides. MRS Proceedings 492.
Crossref
M.A. Morris & M. Leboeuf. (1997) II. Deformed microstructures during creep of TiAl alloys: role of mechanical twinning. Intermetallics 5:5, pages 339-354.
Crossref
H. Clemens, W. Glatz & F. Appel. (1996) Tensile properties and strain rate sensitivity of Ti-47Al-2Cr-0.2Si sheet material with different microstructures. Scripta Materialia 35:3, pages 429-434.
Crossref
S. Yokoshima & M. Yamaguchi. (1996) Fracture behavior and toughness of PST crystals of TiAl. Acta Materialia 44:3, pages 873-883.
Crossref
F. Appel, H. Clemens, W. Glatz & R. Wagner. (2011) Tensile Properties and Deformation Mechanisms in Two-Phase Titanium Aluminide Sheet Material. MRS Proceedings 460.
Crossref
F. Appel, U. Christoph, U. Lorenz & D R. Wagner. (2011) Effect of Coherency Stresses on the Stability of Lamellar (α 2 +γ) Titanium Aluminides . MRS Proceedings 404.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.