197
Views
130
CrossRef citations to date
0
Altmetric
Original Articles

Modelling the flow stress anomaly in γ-TiAl I. Experimental observations of dislocation mechanisms

, , , &
Pages 1295-1312 | Received 24 Oct 1994, Accepted 25 Nov 1994, Published online: 04 Oct 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (24)

Lin Song, Junpin Lin & Jinshan Li. (2017) Ordinary dislocation configurations in high Nb-containing TiAl alloy deformed at high temperatures. Philosophical Magazine 97:7, pages 515-526.
Read now
Daniel Caillard, Marc Legros & Alain Couret. (2013) Extrinsic obstacles and loop formation in deformed metals and alloys. Philosophical Magazine 93:1-3, pages 203-221.
Read now
I. H. Katzarov, M. J. Cawkwell, A. T. Paxton & M. W. Finnis. (2007) Atomistic study of ordinary screw dislocations in single-phase and lamellar γ-TiAl. Philosophical Magazine 87:12, pages 1795-1809.
Read now
J. B. Singh, G. Molénat, M. Sundararaman, S. Banerjee, G. Saada, P. Veyssière & A. Couret. (2006) The activation and the spreading of deformation in a fully lamellar Ti–47 at.% Al–1 at.% Cr–0.2 at.% Si Alloy. Philosophical Magazine 86:16, pages 2429-2450.
Read now
T. Nakano , K. Hayashi, Y. Umakoshi, Y.-L. Chiu & P. Veyssière. (2005) Effects of Al concentration and resulting long-period superstructures on the plastic properties at room temperature of Al-rich TiAl single crystals. Philosophical Magazine 85:22, pages 2527-2548.
Read now
Joël Malaplate, Daniel Caillard & Alain Couret . (2004) Interpretation of the stress dependence of creep by a mixed climb mechanism in TiAl. Philosophical Magazine 84:34, pages 3671-3687.
Read now
Patrick Veyssière & Fabienne Grégori. (2002) Properties of {110](111} slip in Al-rich γ-TiAl deformed at room temperature II. The formation of strings of prismatic loops. Philosophical Magazine A 82:3, pages 567-577.
Read now
Fabienne Grégori, Philippe Penhoud & Patrick Veyssière. (2001) Extrinsic factors influencing the yield stress anomaly of Al-rich γ-TiAl. Philosophical Magazine A 81:3, pages 529-542.
Read now
S. Jiao, N. Bird, P.B. Hirsch & G. Taylor. (2001) Yield stress anomalies in single crystals of Ti–54.5 at.% Al III. Ordinary slip. Philosophical Magazine A 81:1, pages 213-244.
Read now
François Louchet & Bernard Viguier. (2000) Ordinary dislocations in γ-TiAl: Cusp unzipping, jog dragging and stress anomaly. Philosophical Magazine A 80:4, pages 765-779.
Read now
A. Couret. (1999) An in-situ study of ordinary dislocation glide in γ-TiAl alloys. Philosophical Magazine A 79:8, pages 1977-1994.
Read now
Xiaoli Shi, S. Mahajan, T.M. Pollock & V.S. Arunachalam. (1999) Evolution of substructures in deformed NiAl single crystals oriented for single slip. Philosophical Magazine A 79:7, pages 1555-1566.
Read now
D. Häussler, M. Bartsch, M. Aindow, I.P. Jones & U. Messerschmidt. (1999) Dislocation processes during the plastic deformation of γ-TiAl. Philosophical Magazine A 79:5, pages 1045-1071.
Read now
S. Jiao, N. Bird, P.B. Hirsch & G. Taylor. (1998) Yield stress anomalies in single crystals of Ti-54.5 at.% Al: I. Overview and (011) superdislocation slip. Philosophical Magazine A 78:3, pages 777-802.
Read now
Julia Panova & Diana Farkas. (1998) Atomistic simulation of dislocation core configurations in TiAl. Philosophical Magazine A 78:2, pages 389-404.
Read now
Seshagiri Sriram, DennisM. Dimiduk, PeterM. Hazzledine & VijayK. Vasudevan. (1997) The geometry and nature of pinning points of ½ ⟨110] unit dislocations in binary TiAl alloys. Philosophical Magazine A 76:5, pages 965-993.
Read now
H. Inui, M. Matsumuro, D.-H. Wu & M. Yamaguchi. (1997) Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti−56 at.% Al). Philosophical Magazine A 75:2, pages 395-423.
Read now
B. Viguier & K.J. Hemker. (1996) Characterizing faulted dipoles in deformed gamma TiAl. Philosophical Magazine A 73:3, pages 575-599.
Read now
François Louchet. (1995) Flow stress anomalies, mobile dislocation exhaustion and strain rate sensitivity. Philosophical Magazine A 72:4, pages 905-912.
Read now
Francois Louchet & Bernard Viguier. (1995) Modelling the flow stress anomaly in γ-TiAl II. The local pinning-unzipping model: Statistical analysis and consequences. Philosophical Magazine A 71:6, pages 1313-1333.
Read now

Articles from other publishers (106)

Jean-Philippe Monchoux & Daniel Ferry. (2023) Habit planes of climbing and gliding dislocations in TiAl determined in three dimensions by electron tomography. Scripta Materialia 236, pages 115679.
Crossref
Hui Tao, Huizhong Li, Li Wang, Yixuan Che, Weiwei He, Huixia Li, Rui Zhou & Xiaopeng Liang. (2023) Improvement on high-temperature tensile strength and ductility of selective electron beam melting TiAl alloys via small-strain forging. Materials Science and Engineering: A 873, pages 145009.
Crossref
Benjamin Galy, Michael Musi, Muriel Hantcherli, Guy Molénat, Alain Couret, Petra Spoerk-Erdely, Helmut Clemens & Jean-Philippe Monchoux. (2023) Glide and mixed climb dislocation velocity in γ-TiAl investigated by in-situ transmission electron microscopy. Scripta Materialia 228, pages 115333.
Crossref
Guy Molénat, Benjamin Galy, Michael Musi, Louïse Toualbi, Marc Thomas, Helmut Clemens, Jean-Philippe Monchoux & Alain Couret. (2022) Plasticity and brittleness of the ordered βo phase in a TNM-TiAl alloy. Intermetallics 151, pages 107653.
Crossref
Xiaoyu Zhang, Yang Liu & Caglar Oskay. (2022) Uncertainty Quantification for Microstructure-Sensitive Fatigue Nucleation and Application to Titanium Alloy, Ti6242. Frontiers in Materials 9.
Crossref
Lukas Haußmann, Steffen Neumeier, Johannes Bresler, Simon Keim, Florian Pyczak & Mathias Göken. (2022) Influence of Nb, Ta and Zr on the Interdiffusion Coefficients and Solid Solution Strengthening of γ-TiAl Single Phase Alloys. Metals 12:5, pages 752.
Crossref
Hang-Yu Yue, Hui Peng, Yong-Jun Su, Xiao-Peng Wang & Yu-Yong Chen. (2021) Microstructure and high-temperature tensile property of TiAl alloy produced by selective electron beam melting. Rare Metals 40:12, pages 3635-3644.
Crossref
Xiang Zhang, Yang Liu & Caglar Oskay. (2021) Multiscale Reduced-Order Modeling of a Titanium Skin Panel Subjected to Thermomechanical Loading. AIAA Journal, pages 1-14.
Crossref
Bochao Lin, Wei Chen, Yang Yang, Fan Wu & Zhiqiang Li. (2020) Anisotropy of microstructure and tensile properties of Ti–48Al–2Cr–2Nb fabricated by electron beam melting. Journal of Alloys and Compounds 830, pages 154684.
Crossref
Yang Liu, Xiang Zhang, Yiguo Zhu, Ping Hu & Caglar Oskay. (2020) Dislocation density informed eigenstrain based reduced order homogenization modeling: verification and application on a titanium alloy structure subjected to cyclic loading. Modelling and Simulation in Materials Science and Engineering 28:2, pages 025004.
Crossref
Kelvin Y. Xie, K. Madhav Reddy, Luoning Ma, Alexander Caffee, Mingwei Chen & Kevin J. Hemker. (2019) Experimental observations of the mechanisms associated with the high hardening and low strain to failure of magnesium. Materialia 8, pages 100504.
Crossref
Alain Couret, Jean-Philippe Monchoux & Daniel Caillard. (2019) On the high creep strength of the W containing IRIS-TiAl alloy at 850 °C. Acta Materialia 181, pages 331-341.
Crossref
Leonardo Agudo Jácome, Kai Pöthkow, Olaf Paetsch & Hans-Christian Hege. (2018) Three-dimensional reconstruction and quantification of dislocation substructures from transmission electron microscopy stereo pairs. Ultramicroscopy 195, pages 157-170.
Crossref
Soumaya Naanani, Jean-Philippe Monchoux, Catherine Mabru & Alain Couret. (2018) Pure climb of [001] dislocations in TiAl at 850 °C. Scripta Materialia 149, pages 53-57.
Crossref
Helal Chowdhury, Holm Altenbach, Manja Krüger & Konstantin Naumenko. (2017) Reviewing the class of Al-rich Ti-Al alloys: modeling high temperature plastic anisotropy and asymmetry. Mechanics of Advanced Materials and Modern Processes 3:1.
Crossref
Jean-Philippe Monchoux, Jiangshan Luo, Thomas Voisin & Alain Couret. (2017) Deformation modes and size effect in near-γ TiAl alloys. Materials Science and Engineering: A 679, pages 123-132.
Crossref
Thomas Voisin, Jean-Philippe Monchoux, Marc Thomas, Christophe Deshayes & Alain Couret. (2016) Mechanical Properties of the TiAl IRIS Alloy. Metallurgical and Materials Transactions A 47:12, pages 6097-6108.
Crossref
Zofia Trzaska, Alain Couret & Jean-Philippe Monchoux. (2016) Spark plasma sintering mechanisms at the necks between TiAl powder particles. Acta Materialia 118, pages 100-108.
Crossref
Daniel Caillard, Martin Rautenberg & Xavier Feaugas. (2015) Dislocation mechanisms in a zirconium alloy in the high-temperature regime: An in situ TEM investigation. Acta Materialia 87, pages 283-292.
Crossref
. 2015. Fundamentals of Creep in Metals and Alloys. Fundamentals of Creep in Metals and Alloys 301 332 .
Roland Hoppe & Fritz Appel. (2014) Deformation-induced internal stresses in multiphase titanium aluminide alloys. Acta Materialia 64, pages 169-178.
Crossref
Yi Gu, Fanhao Zeng, Yanling Qi, Changqing Xia & Xiang Xiong. (2013) Tensile creep behavior of heat-treated TC11 titanium alloy at 450–550°C. Materials Science and Engineering: A 575, pages 74-85.
Crossref
Martin Rautenberg, Xavier Feaugas, Dominique Poquillon & Jean-Marc Cloué. (2012) Microstructural characterization of creep anisotropy at 673 K in the M5® alloy. Acta Materialia 60:10, pages 4319-4327.
Crossref
H. Jabbar, J.-P. Monchoux, M. Thomas & A. Couret. (2011) Microstructures and deformation mechanisms of a G4 TiAl alloy produced by spark plasma sintering. Acta Materialia 59:20, pages 7574-7585.
Crossref
Fritz Appel, Jonathan David Heaton Paul & Michael Oehring. 2011. Gamma Titanium Aluminide Alloys. Gamma Titanium Aluminide Alloys 125 248 .
Fritz Appel, Jonathan David Heaton Paul & Michael Oehring. 2011. Gamma Titanium Aluminide Alloys. Gamma Titanium Aluminide Alloys 71 124 .
I.H. Katzarov & A.T. Paxton. (2011) Is the pinning of ordinary dislocations in γ-TiAl intrinsic or extrinsic in nature? A combined atomistic and kinetic Monte Carlo approach. Acta Materialia 59:3, pages 1281-1290.
Crossref
Taiquan Zhang, Qingchang Meng, Yujin Wang, Yu Zhou & Guiming Song. (2011) Dislocation Behavior in ZrC Particles during Elevated Temperature Compressive Deformation of a 30 vol.% ZrCp/W Composite. Journal of Materials Science & Technology 27:6, pages 553-558.
Crossref
Nicolas Barbi, Luc Rougier, Frédéric Diologent & Andreas Mortensen. (2010) Influence of chemistry and microstructure on the activation volume of TiAl alloys. Intermetallics 18:11, pages 2145-2153.
Crossref
A Couret. (2010) Low and high temperature deformation mechanisms in TiAl alloys. Journal of Physics: Conference Series 240, pages 012001.
Crossref
Tomáš Kruml, Karel Obrtlík, Martin Petrenec & Jaroslav Polák. (2009) Cyclic Response and Fatigue Life of TiAl Alloys at High Temperatures. Key Engineering Materials 417-418, pages 585-588.
Crossref
H. Wang, D.S. Xu, R. Yang & P. Veyssière. (2009) The transformation of narrow dislocation dipoles in selected fcc metals and in γ-TiAl. Acta Materialia 57:13, pages 3725-3737.
Crossref
J.H. Moon, S. Karthikeyan, B.M. Morrow, S.P. Fox & M.J. Mills. (2009) High-temperature creep behavior and microstructure analysis of binary Ti–6Al alloys with trace amounts of Ni. Materials Science and Engineering: A 510-511, pages 35-41.
Crossref
Frédéric Diologent & Tomas Kruml. (2008) Measurement of the effective activation volume in 45XD titanium aluminides by repeated transient tests. Materials Science and Engineering: A 487:1-2, pages 377-382.
Crossref
Houria Jabbar, Jean-Philippe Monchoux, Marc Thomas & Alain Couret. (2018) Development of G4 TiAl Alloys by Spark Plasma Sintering. MRS Proceedings 1128.
Crossref
. 2008. Fundamentals of Creep in Metals and Alloys. Fundamentals of Creep in Metals and Alloys 261 288 .
F. Cao & T.M. Pollock. (2007) Deformation mechanisms in a Ru–Ni–Al ternary B2 intermetallic alloy. Acta Materialia 55:8, pages 2715-2727.
Crossref
Y. L. CHIU, P. PENHOUD & P. VEYSSIÈRE. (2012) PORTEVIN–LE CHÂTELIER INSTABILITY IN L1 0 - TiAl SINGLE CRYSTAL . International Journal of Modern Physics B 20:25n27, pages 4189-4194.
Crossref
Hanliang Zhu, D.Y. Seo, K. Maruyama & P. Au. (2006) Strengthening of a fully lamellar TiAl + W alloy by dynamic precipitation of β phase during long-term creep. Scripta Materialia 54:3, pages 425-430.
Crossref
A. Couret & D. Caillard. 2006. Encyclopedia of Materials: Science and Technology. Encyclopedia of Materials: Science and Technology 1 14 .
Joël Malaplate, Daniel Caillard & Alain Couret. (2005) Correlation between creep activation parameters and microscopic dislocation behaviour in γ TiAl alloys. Materials Science and Engineering: A 400-401, pages 105-108.
Crossref
S. Karthikeyan, J.H. Moon, G.B. Viswanathan & Michael J. Mills. (2004) Modelling Creep Controlled by the Glide of Jogged Screw Dislocations in TiAl and Ti-Based Alloys. Defect and Diffusion Forum 233-234, pages 127-148.
Crossref
S. Karthikeyan, G.B. Viswanathan & M.J. Mills. (2004) Evaluation of the jogged-screw model of creep in equiaxed γ-TiAl: identification of the key substructural parameters. Acta Materialia 52:9, pages 2577-2589.
Crossref
Marc Zupan & K.J. Hemker. (2003) Yielding behavior of aluminum-rich single crystalline γ-TiAl. Acta Materialia 51:20, pages 6277-6290.
Crossref
G. Babu Viswanathan, Michael J. Mills & Vijay K. Vasudevan. (2003) Microstructural effects on the tensile properties and deformation behavior of a Ti-48Al gamma titanium aluminide. Metallurgical and Materials Transactions A 34:10, pages 2113-2127.
Crossref
K. Hagihara, T. Nakano & Y. Umakoshi. (2003) Plastic deformation behaviour in Ni3Ti single crystals with D024 structure. Acta Materialia 51:9, pages 2623-2637.
Crossref
Subramanian Karthikeyan, Junho Moon, Gopal B. Viswanathan & Michael J. Mills. (2011) Application of a Modified Jogged-Screw Model for Creep of Titanium Aluminides: Evaluation Of The Key Substructural Parameters. MRS Proceedings 779.
Crossref
Subramanian Karthikeyan, Junho Moon, Gopal B. Viswanathan & Michael J. Mills. (2011) Application of a Modified Jogged-Screw Model for Creep of Titanium Aluminides: Evaluation Of The Key Substructural Parameters. MRS Proceedings 778.
Crossref
Y. Song, Z.X. Guo & R. Yang. (2002) First principles studies of TiAl-based alloys. Journal of Light Metals 2:3, pages 115-123.
Crossref
S. Karthikeyan, G.B. Viswanathan, P.I. Gouma, Vijay K. Vasudevan, Y-W. Kim & M.J. Mills. (2002) Mechanisms and effect of microstructure on creep of TiAl-based alloys. Materials Science and Engineering: A 329-331, pages 621-630.
Crossref
H Inui, K Chikugo, K Nomura & M Yamaguchi. (2002) Lattice defects and their influence on the deformation behavior of single crystals of TiAl. Materials Science and Engineering: A 329-331, pages 377-387.
Crossref
Z Jiao, S.H Whang, M.H Yoo & Q Feng. (2002) Stability of ordinary dislocations on cross-slip planes in γ-TiAl. Materials Science and Engineering: A 329-331, pages 171-176.
Crossref
G. B. Viswanathan, S. Karthikeyan, M. J. Mills & R. W. Hayes. (2002) Application of a modified jogged-screw model for creep of TiAl and α-Ti alloys. Metallurgical and Materials Transactions A 33:2, pages 329-336.
Crossref
Patrick Veyssière, Yu-Lung Chiu & Fabienne Grégori. (2011) Micromechanisms of deformation in γ-TiAl. MRS Proceedings 753.
Crossref
Subramanian Karthikeyan, Gopal B. Viswanathan & Michael J. Mills. (2011) A Revised Jogged-Screw Model For Creep Of Equiaxed γ-TiAl: Identification Of The Key Substructural Parameters.. MRS Proceedings 753.
Crossref
B. Viguier, I.L. Martin & J. Bonneville. 2002. 459 545 .
G.B Viswanathan, R.W Hayes & M.J Mills. (2001) A study based on jogged-screw dislocations for high temperature creep in Ti alloys. Materials Science and Engineering: A 319-321, pages 706-710.
Crossref
Daniel Caillard. (2001) Yield-stress anomalies and high-temperature mechanical properties of intermetallics and disordered alloys. Materials Science and Engineering: A 319-321, pages 74-83.
Crossref
Alain Couret. (2001) Glide mechanism of ordinary dislocations in the γ phase of TiAl. Intermetallics 9:10-11, pages 899-906.
Crossref
B.V Petukhov. (2001) Statistical model of the local pinning of dislocations due to cross-slip events. Materials Science and Engineering: A 309-310, pages 345-347.
Crossref
F. Louchet. 2001. Encyclopedia of Materials: Science and Technology. Encyclopedia of Materials: Science and Technology 4158 4164 .
Q Feng & S.H Whang. (2000) Deformation of Ti–56 At.%Al single crystals oriented for single slip by 1/2<110] ordinary dislocations. Acta Materialia 48:17, pages 4307-4321.
Crossref
F.R.N. Nabarro. (2000) Two-phase materials for high-temperature service. Intermetallics 8:9-11, pages 979-985.
Crossref
B.A. Greenberg, O.V. Antonova, A.Yu. Volkov & M.A. Ivanov. (2000) The non-monotonic temperature dependence of the yield stress in TiAl and CuAu alloys. Intermetallics 8:8, pages 845-853.
Crossref
S.H Whang, Q Feng & Z.-M Wang. (2000) Deformation characteristics and dislocation structures in single phase gamma titanium aluminides. Intermetallics 8:5-6, pages 531-537.
Crossref
B. A. Greenberg & M. A. Ivanov. (2000) Anomalies in Deformation Behaviour of TiAl Intermetallic. Uspehi Fiziki Metallov 1:1, pages 9-48.
Crossref
Z. Jin, C. Cady, G. T. Gray & Y. -W. Kim. (2000) Mechanical behavior of a fine-grained duplex γ-TiAl alloy. Metallurgical and Materials Transactions A 31:13, pages 1007-1016.
Crossref
Z. Jin, C. Cady, G. T. GrayIIIIII & Y. -W. Kim. (2000) Mechanical behavior of a fine-grained duplex γ-TiAl alloy. Metallurgical and Materials Transactions A 31:3, pages 1007-1016.
Crossref
B. Skrotzki. (2000) Crystallographic aspects of deformation twinning and consequences for plastic deformation processes in γ-TiAl. Acta Materialia 48:4, pages 851-862.
Crossref
Fabienne Grégori & Patrick Veyssière. (2011) Mechanisms contributing to the pinning of ordinary dislocations in γ-TiAl. MRS Proceedings 646.
Crossref
Marc C. Fivel, Francois Louchet, Bernard Viguier & Marc Verdier. (2011) On the Stress Anomaly of γ-TiAl. MRS Proceedings 646.
Crossref
M. J. Mills. 2000. Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering. Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering 469 478 .
L. Parrini. (1999) Influence of the temperature on the plastic deformation in TiAl. Metallurgical and Materials Transactions A 30:11, pages 2865-2873.
Crossref
Qiang Feng & Sung H. Whang. (1999) Cross-slip and glide behavior of ordinary dislocations in single crystal γ-Ti–56Al. Intermetallics 7:9, pages 971-979.
Crossref
Fabienne Grégori & Patrick Veyssière. (1999) Microstructures in Al-richγ-TiAl strained in the domain of temperature of flow stress anomalies. Bulletin of Materials Science 22:3, pages 585-592.
Crossref
G.B Viswanathan, V.K Vasudevan & M.J Mills. (1999) Modification of the jogged-screw model for creep of γ-TiAl. Acta Materialia 47:5, pages 1399-1411.
Crossref
Nazim Uçar,. (1999) STRENGTH ANOMALY IN Cd SINGLE CRYSTALS. Journal of the Mechanical Behavior of Materials 10:1, pages 1-6.
Crossref
Fabienne Grjégori & Patrick VeyssiÈRe. (2011) Properties of the Deformation Microstructure in Al-Rich γ-TiAl Deformed by Ordinary Dislocations. MRS Proceedings 578.
Crossref
M. J. Mills, G. B. Viswanathan, R. Srinivasan, M.F. Savage, R.D. Noebe & M. S. Daw. (2011) Dislocation Structure and Deformation Behavior of Intermetallic Compounds. MRS Proceedings 578.
Crossref
P. Wang, M. Kumar, D. Veeraraghavan & V.K. Vasudevan. (1998) Observations and analyses of dislocations and stacking faults in the massive γm phase in a quenched Ti–46.5 at.% Al alloy. Acta Materialia 46:1, pages 13-30.
Crossref
S Zghal, A Menand & A Couret. (1998) Pinning points anchoring ordinary and Shockley dislocations in TiAl alloys. Acta Materialia 46:16, pages 5899-5905.
Crossref
S. I. Rao, D. M. Dimiduk & C. Woodward. (1998) Computational tools for alloy design: Solid solutions in Gamma-TiAl. JOM 50:7, pages 37-41.
Crossref
Ping Wang, Mukul Kumar, Kevin J Hemker & Vijay K Vasudevan. (1998) Characterization of unusual stacking faults and dislocations in the massive γm-phase in a quenched Ti–46 at% Al alloy. Materials Letters 35:5-6, pages 283-289.
Crossref
F. Appel & R. Wagner. (1998) Microstructure and deformation of two-phase γ-titanium aluminides. Materials Science and Engineering: R: Reports 22:5, pages 187-268.
Crossref
L Parrini. (1998) Influence of interfaces on the plastic deformation in Ti–Al. Journal of Alloys and Compounds 270:1-2, pages 203-211.
Crossref
Marc Zupan, D. M. Dimiduk & K. J. Hemker. (2011) Microsample Testing of Single Crystalline Ti-52 at%Al and Ti-55.5 at%Al. MRS Proceedings 552.
Crossref
S. Jiao, N. Bird, P. B. Hirsch & G. Taylor. (2011) Characteristics of Ordinary ½⟨110] Slip in Single Crystals of γ-TiAl. MRS Proceedings 552.
Crossref
Takayoshi Nakano, Koutarou Hayashi, Keishi Ashida & Yukichi Umakoshi. (2011) Effect of A1 2 Ti Phase on Plastic Behavior in Ti-62.5at%Al Single Crystals . MRS Proceedings 552.
Crossref
K. Y. Chen, M. Li & S. J. Zhou. (2011) Atomistic Studies of Jogged Screw Dislocations in γ-TiAl Alloys. MRS Proceedings 552.
Crossref
Slim Zghal, Haruyuki Inui, Masaharu Yamaguchi & Alain Couret. (2011) Role of the Interfaces on the Activation of Slip Systems in The PST TiAl Alloy. MRS Proceedings 552.
Crossref
S. Jiao, N. Bird, P. B.G. Taylor. (2011) Yield Stress Anomaly for 1/2〈112] {1111} Slip in y-Titanium Aluminide. MRS Proceedings 552.
Crossref
Q. Feng & S. H.. (2011) Orientation Dependent Strength and Cross-Slip Structure of Ordinary Dislocations in Single Crystal γ-Ti-56A1. MRS Proceedings 552.
Crossref
U. Messerschmidt, M. Bartsch, S. Guder, D. Häuβler, R. Haushälter & M. Yamaguchi. (1998) Dynamic dislocation behaviour in the intermetallic compounds NiAl, TiAl and MoSi2. Intermetallics 6:7-8, pages 729-733.
Crossref
D.M. Dimiduk. (1998) Systems engineering of gamma titanium aluminides: impact of fundamentals on development strategy. Intermetallics 6:7-8, pages 613-621.
Crossref
Y. Song, D.S. Xu, R. Yang, D. Li & Z.Q. Hu. (1998) Theoretical investigation of ductilizing effects of alloying elements on TiAl. Intermetallics 6:3, pages 157-165.
Crossref
Min Lu & K. J. Hemker. (1998) Microstructural evolution during creep of single-phase gamma TiAl. Metallurgical and Materials Transactions A 29:1, pages 99-104.
Crossref
Q Feng, Z.M Wang & S.H Whang. (1997) Deformation under single slip of ordinary dislocations in single crystal Ti–56Al. Materials Science and Engineering: A 239-240, pages 55-62.
Crossref
Min Lu & K.J. Hemker. (1997) Intermediate temperature creep properties of gamma TiAl. Acta Materialia 45:9, pages 3573-3585.
Crossref
S. Zghal & A. Couret. (1997) A study of the transmision of the deformation at the ordered domain interfaces in a TiAl lamellar alloy. Materials Science and Engineering: A 234-236, pages 668-671.
Crossref
F. Appel, U. Lorenz, M. Oehring, U. Sparka & R. Wagner. (1997) Thermally activated deformation mechanisms in micro-alloyed two-phase titanium amminide alloys. Materials Science and Engineering: A 233:1-2, pages 1-14.
Crossref
Haruyuki Inui & Masaharu Yamaguchi. 1997. Properties of Complex Inorganic Solids. Properties of Complex Inorganic Solids 309 320 .
B. Viguier, J. Bonneville & J.L. Martin. (1996) The mechanical properties of single phase γ Ti47Al51Mn2 polycrystals. Acta Materialia 44:11, pages 4403-4415.
Crossref
B.J. Inkson. (1996) On a mechanism of 12〈110〉 and 12〈112〉 dislocation pinning in γ-TiAl. Scripta Materialia 35:8, pages 967-971.
Crossref
M. J. Mills, J. M.K. Wiezorek & H. L. Fraser. (2011) Hrtem Studies of Dislocations and Interfaces in TiAl. MRS Proceedings 466.
Crossref
Min Lu & K. J. Hemker. (2011) Monotonic and Transient Creep Experiments for Single Phase Gamma TiAl at Intermediate Temperatures. MRS Proceedings 460.
Crossref
Marc Zupan, David LaVan & K. J. Hemker. (2011) Tensile and Compression Testing of Single-Crystal Gamma Ti-55.5 Al. MRS Proceedings 460.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.