89
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

Study of copper precipitates in α-iron by computer simulation II. Interatomic potential for Fe[sbnd]Cu interactions and properties of coherent precipitates

&
Pages 249-263 | Received 09 Jan 1995, Accepted 26 Jun 1995, Published online: 27 Sep 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (8)

A.V. Barashev, S.I. Golubov, Yu.N. Osetsky & R.E. Stoller. (2010) Dissociation of migrating particle from trap with long-range interaction field. Philosophical Magazine 90:7-8, pages 907-921.
Read now
A. C. Arokiam, A. V. Barashev, D. J. Bacon & Y. N. Osetsky. (2007) Atomic-scale computer simulation study of the interaction of Cu-rich precipitates with irradiation-produced defects in α-Fe. Philosophical Magazine 87:6, pages 925-943.
Read now
A. C. Arokiam, A. V. Barashev, D. J. Bacon & Yu. N. Osetsky. (2005) Characteristics of the interaction of Cu-rich precipitates with irradiation-produced defects in α-Fe. Philosophical Magazine Letters 85:9, pages 491-501.
Read now
Yu.N. Osetsky, A. Serra, M. Victoria, S.I. Golubov & V. Priego. (1999) Vacancy loops and stacking-fault tetrahedra in copper. Philosophical Magazine A 79:9, pages 2259-2283.
Read now
A.G. Mikhin & N. De Diego. (1999) Interionic potential model for the Al-Li system. Philosophical Magazine A 79:5, pages 1233-1246.
Read now
Yu.N. Osetsky & A. Serra. (1997) Study of copper precipitates in α-iron by computer simulation. Philosophical Magazine A 75:4, pages 1097-1115.
Read now
G.J. Ackland, D.J. Bacon, A.F. Calder & T. Harry. (1997) Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential. Philosophical Magazine A 75:3, pages 713-732.
Read now

Articles from other publishers (39)

A. Ulbricht, J. Dykas, P. Chekhonin, E. Altstadt & F. Bergner. (2023) Small-angle neutron scattering study of neutron-irradiated and post-irradiation annealed VVER-1000 reactor pressure vessel weld material. Frontiers in Nuclear Engineering 2.
Crossref
Y. J. Shen, L. C. Liu, S. T. Mi, H. R. Gong & S. F. Zhou. (2020) Construction of an n -body Fe–Cu potential and its application in atomistic modeling of Fe–Cu solid solutions . Journal of Applied Physics 127:4.
Crossref
Panagiotis Grammatikopoulos. 2020. Computational Modelling of Nanomaterials. Computational Modelling of Nanomaterials 161 186 .
Shuoxue Jin, Xingzhong Cao, Guodong Cheng, Xiangyu Lian, Te Zhu, Peng Zhang, Runsheng Yu & Baoyi Wang. (2018) Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys. Journal of Nuclear Materials 501, pages 293-301.
Crossref
Paul Erhart, Jaime Marian & Babak Sadigh. (2013) Thermodynamic and mechanical properties of copper precipitates in -iron from atomistic simulations . Physical Review B 88:2.
Crossref
N. I. Medvedeva, A. S. Murthy, V. L. Richards, D. C. Van Aken & J. E. Medvedeva. (2012) First principle study of cobalt impurity in bcc Fe with Cu precipitates. Journal of Materials Science 48:3, pages 1377-1386.
Crossref
C. S. Becquart & C. Domain. (2010) Modeling Microstructure and Irradiation Effects. Metallurgical and Materials Transactions A 42:4, pages 852-870.
Crossref
P Grammatikopoulos, D J Bacon & Yu N Osetsky. (2011) The influence of interaction geometry on the obstacle strength of voids and copper precipitates in iron. Modelling and Simulation in Materials Science and Engineering 19:1, pages 015004.
Crossref
U Birkenheuer, A Ulbricht, F Bergner & A Gokhman. (2010) On the formation of mixed vacancy-copper clusters in neutron-irradiated Fe-Cu alloys. Journal of Physics: Conference Series 247, pages 012011.
Crossref
F. Bergner, A. Ulbricht, A. Gokhman & D. Erak. (2008) Nature of defect clusters in neutron-irradiated iron-based alloys deduced from small-angle neutron scattering. Journal of Nuclear Materials 373:1-3, pages 199-205.
Crossref
R.C. Pasianot & L. Malerba. (2007) Interatomic potentials consistent with thermodynamics: The Fe–Cu system. Journal of Nuclear Materials 360:2, pages 118-127.
Crossref
K Tapasa, D J Bacon & Yu N Osetsky. (2006) Computer simulation of dislocation–solute interaction in dilute Fe–Cu alloys. Modelling and Simulation in Materials Science and Engineering 14:7, pages 1153-1166.
Crossref
E. Vincent, C.S. Becquart & C. Domain. (2006) Solute interaction with point defects in α Fe during thermal ageing: A combined ab initio and atomic kinetic Monte Carlo approach. Journal of Nuclear Materials 351:1-3, pages 88-99.
Crossref
A. Caro, M. Caro, E.M. Lopasso, P.E.A. Turchi & D. Farkas. (2006) Thermodynamics of Fe–Cu alloys as described by a classic potential. Journal of Nuclear Materials 349:3, pages 317-326.
Crossref
Dieter Isheim, Michael S. Gagliano, Morris E. Fine & David N. Seidman. (2006) Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Materialia 54:3, pages 841-849.
Crossref
M. V. Sorokin & A. E. Volkov. (2005) Effect of diffusion on nucleation of two-dimensional nanoislands. Physical Review E 72:5.
Crossref
Byeong-Joo Lee, Brian D. Wirth, Jae-Hyeok Shim, Junhyun Kwon, Sang Chul Kwon & Jun-Hwa Hong. (2005) Modified embedded-atom method interatomic potential for the alloy system and cascade simulations on pure Fe and alloys . Physical Review B 71:18.
Crossref
A. Caro, P.E.A. Turchi, M. Caro & E.M. Lopasso. (2005) Thermodynamics of an empirical potential description of Fe–Cu alloys. Journal of Nuclear Materials 336:2-3, pages 233-242.
Crossref
Manish Prasad & Talid Sinno. (2004) Feature activated molecular dynamics: An efficient approach for atomistic simulation of solid-state aggregation phenomena. The Journal of Chemical Physics 121:18, pages 8699-8710.
Crossref
J. Marian, B.D. Wirth, G.R. Odette & J.M. Perlado. (2004) Cu diffusion in α-Fe: determination of solute diffusivities using atomic-scale simulations. Computational Materials Science 31:3-4, pages 347-367.
Crossref
D. N. Korolev & A. E. Volkov. (2004) Nanoprecipitation resulting from the decomposition of supersaturated solid solutions in the tracks of swift heavy ions. Technical Physics 49:10, pages 1308-1312.
Crossref
H. R. Gong, L. T. Kong & B. X. Liu. (2004) Structural stability and magnetic properties of metastable Fe-Cu alloys studied by ab initio calculations and molecular dynamics simulations . Physical Review B 69:5.
Crossref
E. M. Lopasso, M. Caro, A. Caro & P. E. A. Turchi. (2003) Phase diagram of an empirical potential: The case of Fe-Cu. Physical Review B 68:21.
Crossref
Byeong-Joo Lee, Jae-Hyeok Shim & M. I. Baskes. (2003) Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Physical Review B 68:14.
Crossref
Alexander E. Volkov & Denis N. Korolev. (2003) Nanoprecipitate nucleation caused by swift heavy ions in supersaturated solid solutions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 209, pages 98-102.
Crossref
A.E. Volkov. (2003) Theory of nanocluster nucleation under continuous supply of monomers. Physica A: Statistical Mechanics and its Applications 323, pages 336-356.
Crossref
Anna Machová. (2002) Residual stress in Fe–Cu alloys at 0 and 600 K. Computational Materials Science 24:4, pages 535-543.
Crossref
Seiya Yanagita, Qiu Xu, Toshimasa Yoshiie & Hiromitsu Ino. (2002) Model Calculation of the Damage Rate Dependence of Yield Stress Change in an Irradiated Fe-Cu Model Alloy. MATERIALS TRANSACTIONS 43:7, pages 1663-1669.
Crossref
T. Harry & D.J. Bacon. (2002) Computer simulation of the core structure of the <111> screw dislocation in α-iron containing copper precipitates:. Acta Materialia 50:1, pages 195-208.
Crossref
Anna Machová. (2001) Brittle–ductile behavior in bcc iron containing Copper nano-particles. Materials Science and Engineering: A 319-321, pages 574-577.
Crossref
A. Serra. (2001) Atomic Computer Simulation: Large Scale Calculations of Defect Properties by Empirical Potentials. physica status solidi (b) 227:1, pages 151-175.
Crossref
Hirotsugu Ogi, Hassel Ledbetter & Sudook Kim. (2001) Snoek relaxation and dislocation damping in aged Fe-Cu-Ni steel. Metallurgical and Materials Transactions A 32:7, pages 1671-1677.
Crossref
C.S. Becquart, C. Domain, J.C. van Duysen & J.M. Raulot. (2001) The role of Cu in displacement cascades examined by molecular dynamics. Journal of Nuclear Materials 294:3, pages 274-287.
Crossref
S.Y. Hu, S. Schmauder & L.Q. Chen. (2000) Atomistic Simulations of Interactions between Cu Precipitates and an Edge Dislocation in a B.C.C. Fe Single Crystal. physica status solidi (b) 220:2, pages 845-846.
Crossref
C.S Becquart, C Domain, A Legris & J.C Van Duysen. (2000) Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades. Journal of Nuclear Materials 280:1, pages 73-85.
Crossref
S Y Hu, Y L Li & K Watanabe. (1999) Calculation of internal stresses around Cu precipitates in the bcc Fe matrix by atomic simulation. Modelling and Simulation in Materials Science and Engineering 7:4, pages 641-655.
Crossref
Matthias Ludwig, Diana Farkas, Dora Pedraza & Siegfried Schmauder. (1998) Embedded atom potential for Fe-Cu interactions and simulations of precipitate-matrix interfaces. Modelling and Simulation in Materials Science and Engineering 6:1, pages 19-28.
Crossref
A. F. Calder & D. J. Bacon. (2011) Computer Simulation Study of the Effects of Copper Solutes on Cascade Damage in Fe-Cu Alloys. MRS Proceedings 439.
Crossref
T. Harry & D. J. Bacon. (2011) Computer Simulation Study of the Effects of Copper Precipitates on Dislocation Core Structure in Ferritic Steels. MRS Proceedings 439.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.