133
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

The dislocation microstructure in orthorhombic O Ti2AlNb deformed between room temperature and 800°C

&
Pages 1401-1418 | Received 25 Jun 1995, Accepted 01 Nov 1995, Published online: 01 Dec 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

C. J. Cowen & C. J. Boehlert . (2006) Microstructure, creep, and tensile behaviour of a Ti–15Al–33Nb (at.%) beta+orthorhombic alloy. Philosophical Magazine 86:1, pages 99-124.
Read now

Articles from other publishers (32)

Penghui Zhang, Weidong Zeng, Fan Zhang, Haoyuan Ma, Jianwei Xu, Xiaobo Liang & Yongqing Zhao. (2024) In-situ investigation of tensile anisotropy mechanism in an advanced Ti2AlNb-based alloy associated with CRSS ratio and damage model. Materials Science and Engineering: A 890, pages 145894.
Crossref
Zedong Liu, Jieren Yang, Xiaoliang Zhao & Ruirun Chen. (2023) Heterostructure manipulation of Ti2AlNb alloy through directional induction heating: investigation of multi-scale deformation mechanisms in the O phase. International Journal of Plasticity 171, pages 103830.
Crossref
N. Li, Z.B. Zhao, H. Sun, T.Y. Zhou, Q.J. Wang, J.X. Yang, Y.H. Liu & B.H. Zhang. (2022) Effects of heat treatment on microstructure evolution and mechanical properties of Ti–22Al–24Nb-0.5Mo alloy. Materials Science and Engineering: A 857, pages 144052.
Crossref
Dong Li, Weidong Zeng, Penghui Zhang, Haoyuan Ma, Jianwei Xu & Xiong Ma. (2022) In Situ Observation of Tensile Deformation of Ti-22Al-25Nb Alloy and Characterization of Deformation in α2 Phase. Metals 12:7, pages 1190.
Crossref
Xiaochong Sui, Guofeng Wang, Qing Liu, Yongkang Liu & Yuqing Chen. (2021) Fabricating Ti2AlNb sheet with tensile strength higher than 1500 MPa by hot packed rolling spark-plasma-sintered pre-alloyed Ti2AlNb powder at the B2 + O phase field. Journal of Alloys and Compounds 876, pages 160110.
Crossref
Y.H. Zhou, D.W. Wang, L.J. Song, A. Mukhtar, D.N. Huang, C. Yang & M. Yan. (2021) Effect of heat treatments on the microstructure and mechanical properties of Ti2AlNb intermetallic fabricated by selective laser melting. Materials Science and Engineering: A 817, pages 141352.
Crossref
V. F. Balakirev, T. V. Osinkina, S. A. Krasikov, E. M. Zhilina, L. B. Vedmid’ & S. V. Zhidovinova. (2021) Joint Metallothermic Reduction of Titanium and Rare Refractory Metals of Group V. Russian Journal of Non-Ferrous Metals 62:2, pages 190-196.
Crossref
V. F. Balakirev, T. V. Osinkina, S. A. Krasikov, E. M. Zhilina, L. B. Vedmid’S. V. Zhidovinova. (2021) Joint metallothermic reduction of titanium and rare refractory metals of V group. Izvestiya Vuzov Tsvetnaya Metallurgiya (Universities Proceedings Non-Ferrous Metallurgy) 1:1, pages 57-65.
Crossref
Penghui Zhang, Weidong Zeng, Runchen Jia, Yinze Kou, Jianwei Xu, Xiaobo Liang & Yongqing Zhao. (2021) Tensile behavior and deformation mechanism for Ti–22Al–25Nb alloy with lamellar O microstructures. Materials Science and Engineering: A 803, pages 140492.
Crossref
Beibei Wei, Bin Tang, Xiaofei Chen, Qin Xu, Shuaijin Zhang, Hongchao Kou & Jinshan Li. (2020) Precipitation Behavior of Orthorhombic Phase in Ti-22Al-25Nb Alloy during Slow Cooling Aging Treatment and Its Effect on Tensile Properties. Metals 10:11, pages 1515.
Crossref
Penghui Zhang, Weidong Zeng, Youping Zheng, Jianwei Xu, Xiaobo Liang & Yongqing Zhao. (2020) Fracture toughness of Ti–22Al–25Nb alloy at room and high temperatures. Materials Science and Engineering: A 796, pages 140009.
Crossref
A. V. Zavodov, S. A. Naprienko, P. N. Medvedev & N. A. Nochovnaya. (2020) Phase and Structural Transformations in a VTI-4 (Ti–22Al–25Nb) Alloy during High-Rate Hot Compression. Russian Metallurgy (Metally) 2020:9, pages 999-1007.
Crossref
Yinling Zhang, Aihan Feng, Shoujiang Qu, Jun Shen & Daolun Chen. (2020) Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy. Journal of Materials Science & Technology 44, pages 140-147.
Crossref
Guo-dong Ren & Jian Sun. (2018) High-resolution electron microscopy characterization of modulated structure in high Nb-containing lamellar γ-TiAl alloy. Acta Materialia 144, pages 516-523.
Crossref
Carl J. Boehlert & Daniel B. Miracle. 2018. Comprehensive Composite Materials II. Comprehensive Composite Materials II 482 524 .
Yuanxin Wang, Zhen Lu, Kaifeng Zhang & Dalin Zhang. (2016) Thermal Mechanical Processing Effects on Microstructure Evolution and Mechanical Properties of the Sintered Ti-22Al-25Nb Alloy. Materials 9:3, pages 189.
Crossref
Chun QIN, Ze-kun YAO, Yu-zhi LI, Yong-quan NING & Hong-zhen GUO. (2014) Effect of hot working on microstructure and mechanical properties of TC11/Ti2AlNb dual-alloy joint welded by electron beam welding process. Transactions of Nonferrous Metals Society of China 24:11, pages 3500-3508.
Crossref
Wei Wang, Weidong Zeng, Chen Xue, Xiaobo Liang & Jianwei Zhang. (2014) Microstructural evolution, creep, and tensile behavior of a Ti–22Al–25Nb (at%) orthorhombic alloy. Materials Science and Engineering: A 603, pages 176-184.
Crossref
Zhenglong Lei, Zhijun Dong, Yanbin Chen, Jian Zhang & Ruican Zhu. (2013) Microstructure and tensile properties of laser beam welded Ti–22Al–27Nb alloys. Materials & Design (1980-2015) 46, pages 151-156.
Crossref
C.J. Cowen & C.J. Boehlert. (2007) The Microstructure, Creep, and Tensile Behavior for Ti-5Al-45Nb (Atomic Percent) Fully-β Alloy. Metallurgical and Materials Transactions A 38:11, pages 2747-2753.
Crossref
N. V. Kazantseva, S. L. Demakov & A. A. Popov. (2007) Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. IV. Formation of the transformation twins upon the α2 → O phase transformation. The Physics of Metals and Metallography 103:4, pages 388-394.
Crossref
C.J. Cowen & C.J. Boehlert. (2006) Microstructure, creep, and tensile behavior of a Ti–21Al–29Nb(at.%) orthorhombic+B2 alloy. Intermetallics 14:4, pages 412-422.
Crossref
Christopher J. Cowen, Dingqiang Li & Carl J. Boehlert. (2011) Microstructure-Property Relationships of Two Ti 2 AlNb-based Intermetallic Alloys: Ti-15Al-33Nb(at.%) and Ti-21Al-29Nb(at.%) . MRS Proceedings 842.
Crossref
J Douin, P Donnadieu, A Finel, G.F Dirras & J.F Silvain. (2002) Influence of the elastic stress relaxation on the microstructures and mechanical properties of metal–matrix composites. Composites Part A: Applied Science and Manufacturing 33:10, pages 1397-1401.
Crossref
C.J Boehlert & J.F Bingert. (2001) Microstructure, tensile, and creep behavior of alloys processed using induction-float-zone melting. Journal of Materials Processing Technology 117:3, pages 400-408.
Crossref
C. J. Boehlert. (2001) Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys. Metallurgical and Materials Transactions A 32:8, pages 1977-1988.
Crossref
T.K Nandy & D Banerjee. (2000) Deformation mechanisms in the O phase. Intermetallics 8:9-11, pages 1269-1282.
Crossref
T.K. Nandy & D. Banerjee. (2000) Creep of the orthorhombic phase based on the intermetallic Ti2AlNb. Intermetallics 8:8, pages 915-928.
Crossref
DANIEL B. MIRACLE. 2000. Comprehensive Composite Materials. Comprehensive Composite Materials 741 778 .
Xiang-Yuan Cui, Yang Jinlong, Li Qunxiang, Xia Shangda & Wang Chongyu. (1999) Electronic structure of Ti 2 AlNb (O phase) . Journal of Physics: Condensed Matter 11:32, pages 6179-6186.
Crossref
C.J. Boehlert. (1999) Microstructure, creep, and tensile behavior of a Ti–12Al–38Nb (at.%) beta+orthorhombic alloy. Materials Science and Engineering: A 267:1, pages 82-98.
Crossref
C. J. Boehlert. (1999) The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy. Journal of Phase Equilibria 20:2, pages 101-108.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.