57
Views
36
CrossRef citations to date
0
Altmetric
Correspondence

Electronic theory for screw dislocation in b.c.c. transition metals

Calculation of the peierls stress and the core energy

&
Pages 531-536 | Received 22 Dec 1977, Published online: 20 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (11)

K. Ito & V. Vitek. (2001) Atomistic study of non-Schmid effects in the plastic yielding of bcc metals. Philosophical Magazine A 81:5, pages 1387-1407.
Read now
M.S. Duesbery & G.Y. Richardson. (1991) The dislocation core in crystalline materials. Critical Reviews in Solid State and Materials Sciences 17:1, pages 1-46.
Read now
V. Rosato, M. Guillope & B. Legrand. (1989) Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model. Philosophical Magazine A 59:2, pages 321-336.
Read now
G.J. Ackland, G. Tichy, V. Vitek & M.W. Finnis. (1987) Simple N-body potentials for the noble metals and nickel. Philosophical Magazine A 56:6, pages 735-756.
Read now
Johsei Nagakawa & M. Meshii. (1981) The deformation of niobium single crystals at temperatures between 77 and 4.2 K. Philosophical Magazine A 44:5, pages 1165-1191.
Read now
K. Masuda & A. Sato. (1981) Electronic theory for screw dislocation motion in dilute b.c.c. transition metal alloys. Philosophical Magazine A 44:4, pages 799-814.
Read now
A.M. Papon, J.P. Simon, P. Guyot & M.C. Desjonquères. (1979) Calculation of {112} twin and stacking fault energies in b.c.c. transition metals. Philosophical Magazine B 40:2, pages 159-172.
Read now

Articles from other publishers (25)

Xiaowang Wang, Shuozhi Xu, Wu-Rong Jian, Xiang-Guo Li, Yanqing Su & Irene J. Beyerlein. (2021) Generalized stacking fault energies and Peierls stresses in refractory body-centered cubic metals from machine learning-based interatomic potentials. Computational Materials Science 192, pages 110364.
Crossref
Wu-Rong Jian, Shuozhi Xu & Irene J. Beyerlein. (2021) On the significance of model design in atomistic calculations of the Peierls stress in Nb. Computational Materials Science 188, pages 110150.
Crossref
V. Vitek & V. Paidar. 2008. A Tribute to F.R.N. Nabarro. A Tribute to F.R.N. Nabarro 439 514 .
Li-qun Chen, Chong-yu Wang & Tao Yu. (2006) Electronic structures of the 〈100〉{010}, 〈100〉{011} and 1/2〈111〉{011} edge dislocations in bcc iron. Computational Materials Science 38:1, pages 39-44.
Crossref
M. Mrovec, D. Nguyen-Manh, D. G. Pettifor & V. Vitek. (2004) Bond-order potential for molybdenum: Application to dislocation behavior. Physical Review B 69:9.
Crossref
Yuan Niu, Shan-Ying Wang, Dong-Liang Zhao & Chong-Yu Wang. (2001) The electronic effect of N impurity in an edge dislocation core system in α-iron. Computational Materials Science 22:3-4, pages 144-150.
Crossref
Yuan Niu, Shan-Ying Wang, Dong-Liang Zhao & Chong-Yu Wang. (2001) Journal of Physics: Condensed Matter 13:19, pages 4267-4276.
Crossref
A.BRYAN EDWARDS, D.J. TILDESLEY & N. BINSTED. (1997) Cumulant expansion analysis of thermal disorder in face centred cubic copper metal by molecular dynamics simulation. Molecular Physics 91:2, pages 357-369.
Crossref
D M Esterling, D K Som & A K Chatterjee. (1987) Solute-atom-dislocation force using modified tight-binding recursion method. Journal of Physics F: Metal Physics 17:1, pages 109-116.
Crossref
D M Esterling, D K Som & A K Chatterjee. (1987) Influence of noncentral forces on lattice stability and defect formation. Journal of Physics F: Metal Physics 17:1, pages 99-107.
Crossref
D M Esterling, D K Som, A K Chatterjee & I M Boswarva. (1987) Modified recursion method for an efficient force computation in transition metals. Journal of Physics F: Metal Physics 17:1, pages 87-98.
Crossref
K. Masuda-Jindo. (1985) Impurity segregation at grain boundaries in metals: Effects of applied stress. Materials Letters 3:4, pages 151-156.
Crossref
K. Masuda-Jindo. (1985) Electronic theory for impurity segregation at lattice defects in metals. Physics Letters A 107:4, pages 185-189.
Crossref
K. Masuda‐Jindo. (2006) Tight‐Binding Electronic Theory for Lattice Defects in Transition Metals. Correlation Effects. physica status solidi (b) 126:2, pages 643-652.
Crossref
E. Kuramoto, Y. Aono & T. Tsutsumi. (2006) Screw dislocation core structure and plastic deformation of BCC Metals. Crystal Research and Technology 19:3, pages 331-339.
Crossref
K Masuda, R Yamamoto & M Doyama. (1983) Application of tight-binding type electronic theory to lattice defect problems in transition metals. Journal of Physics F: Metal Physics 13:7, pages 1407-1413.
Crossref
Kin-ichi Masuda, Minoru Hashimoto, Yoichi Ishida, Ryoichi Yamamoto & Masao Doyama. (1982) Atomic and Electronic Structures of Tilt Grain Boundaries in BCC Transition Metals. Journal of the Physical Society of Japan 51:12, pages 3990-3997.
Crossref
I M Boswarva & D M Esterling. (1982) Efficient force computation method in tight-binding model. Journal of Physics C: Solid State Physics 15:23, pages L729-L732.
Crossref
K. Masuda. (2006) Calculation of Binding Energies of Small Vacancy Clusters in B.C.C. Transition Metals. physica status solidi (b) 112:2, pages 609-614.
Crossref
Kin-ichi Masuda & Kenichi Kojima. (1982) Calculation of Core Structure and Core Energy of Screw and 60° Dislocations in Si: Tight-Binding Method. Journal of the Physical Society of Japan 51:5, pages 1510-1515.
Crossref
E. Kuramoto, Y. Aono & T. Tsutsumi. 1982. Strength of Metals and Alloys (ICSMA 6). Strength of Metals and Alloys (ICSMA 6) 69 74 .
K. Masuda. (2008) On the atomic vibration at f.c.c. transition metal surfaces. Lettere al Nuovo Cimento 31:11, pages 393-399.
Crossref
V. Paidar. (2006) Local Density of Electronic States at the Core of the Screw Dislocation in B.C.C. Lattice. physica status solidi (b) 103:2.
Crossref
M.P. Puls. 1981. Dislocation Modelling of Physical Systems. Dislocation Modelling of Physical Systems 249 268 .
A. Sato & K. Masuda. (1979) Orientation dependence of screw dislocation motion in b.c.c. transition metals. Solid State Communications 29:7, pages 545-548.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.