347
Views
33
CrossRef citations to date
0
Altmetric
Miscellany

Estimating surface solar radiation over complex terrain using moderate‐resolution satellite sensor data

, , &
Pages 47-58 | Received 22 Apr 2004, Accepted 12 May 2004, Published online: 22 Feb 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Jianguang Wen, Qiang Liu, Qinhuo Liu, Qing Xiao & Xiaowen Li. (2009) Scale effect and scale correction of land-surface albedo in rugged terrain. International Journal of Remote Sensing 30:20, pages 5397-5420.
Read now

Articles from other publishers (32)

Yajie Zheng, Zhiqiang Xiao, Hanyu Shi & Jinling Song. (2024) Exploring the Effects of Topography on Leaf Area Index Retrieved from Remote Sensing Data at Various Spatial Scales over Rugged Terrains. Remote Sensing 16:8, pages 1404.
Crossref
Hualong Zheng, Yizhang Wang, Dexin Xie, Zhijin Zhang & Xingliang Jiang. (2024) Analysis of Solar Radiation Differences for High-Voltage Transmission Lines on Micro-Terrain Areas. Energies 17:7, pages 1684.
Crossref
Chuanhong Zhang, Yubin Guo, Zhengwei He, Li He & Huixi Xu. (2022) Analysis of Influence Mechanism of Spatial Distribution of Incoming Solar Radiation Based on DEM. Earth Science Informatics 15:1, pages 635-648.
Crossref
Linjiang Wang, Bingfang Wu, Abdelrazek Elnashar, Weiwei Zhu, Nana Yan, Zonghan Ma, Shirong Liu & Xiaodong Niu. (2022) Incorporation of Net Radiation Model Considering Complex Terrain in Evapotranspiration Determination with Sentinel-2 Data. Remote Sensing 14:5, pages 1191.
Crossref
Hanyu Shi & Zhiqiang Xiao. (2022) Exploring Topographic Effects on Surface Parameters Over Rugged Terrains at Various Spatial Scales. IEEE Transactions on Geoscience and Remote Sensing 60, pages 1-16.
Crossref
Hanyu Shi, Zhiqiang Xiao, Jianguang Wen & Shengbiao Wu. (2022) An Optical–Thermal Surface–Atmosphere Radiative Transfer Model Coupling Framework With Topographic Effects. IEEE Transactions on Geoscience and Remote Sensing 60, pages 1-12.
Crossref
Thomas P. F. Dowling, Peilin Song, Mark C. De Jong, Lutz Merbold, Martin J. Wooster, Jingfeng Huang & Yongqiang Zhang. (2021) An Improved Cloud Gap-Filling Method for Longwave Infrared Land Surface Temperatures through Introducing Passive Microwave Techniques. Remote Sensing 13:17, pages 3522.
Crossref
F. von Rütte, A. Kahl, J. Rohrer & M. Lehning. (2021) How Forward‐Scattering Snow and Terrain Change the Alpine Radiation Balance With Application to Solar Panels. Journal of Geophysical Research: Atmospheres 126:15.
Crossref
Hanyu Shi & Zhiqiang Xiao. (2021) The 4SAILT Model: An Improved 4SAIL Canopy Radiative Transfer Model for Sloping Terrain. IEEE Transactions on Geoscience and Remote Sensing 59:7, pages 5515-5525.
Crossref
Qing Chu, Guangjian Yan, Jianbo Qi, Xihan Mu, Linyuan Li, Yiyi Tong, Yingji Zhou, Yanan Liu, Donghui Xie & Martin Wild. (2021) Quantitative Analysis of Terrain Reflected Solar Radiation in Snow‐Covered Mountains: A Case Study in Southeastern Tibetan Plateau. Journal of Geophysical Research: Atmospheres 126:11.
Crossref
Eyale Bayable Tegegne, Yaoming Ma, Xuelong Chen, Weiqiang Ma, Bingbing Wang, Zhangwei Ding & Zhikun Zhu. (2020) Estimation of the distribution of the total net radiative flux from satellite and automatic weather station data in the Upper Blue Nile basin, Ethiopia. Theoretical and Applied Climatology 143:1-2, pages 587-602.
Crossref
Jianqi Zhao, Xiaoyan Ma, Shuoqiu Wu & Tong Sha. (2020) Dust emission and transport in Northwest China: WRF-Chem simulation and comparisons with multi-sensor observations. Atmospheric Research 241, pages 104978.
Crossref
Wei Wang, Gaofei Yin, Wei Zhao, Fengping Wen & Daijun Yu. (2020) Spatial Downscaling of MSG Downward Shortwave Radiation Product Under Clear-Sky Condition. IEEE Transactions on Geoscience and Remote Sensing 58:5, pages 3264-3272.
Crossref
Ning Hou, Xiaotong Zhang, Weiyu Zhang, Yu Wei, Kun Jia, Yunjun Yao, Bo Jiang & Jie Cheng. (2020) Estimation of Surface Downward Shortwave Radiation over China from Himawari-8 AHI Data Based on Random Forest. Remote Sensing 12:1, pages 181.
Crossref
Jianguang Wen, Qiang Liu, Qing Xiao, Qinhuo Liu, Dongqin You, Dalei Hao, Shengbiao Wu & Xingwen Lin. (2018) Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments. Remote Sensing 10:3, pages 370.
Crossref
Xiaotong Zhang, Shunlin Liang, Zhen Song, Hailin Niu, Guoxin Wang, Wenjun Tang, Zhuoqi Chen & Bo Jiang. (2016) Local Adaptive Calibration of the Satellite-Derived Surface Incident Shortwave Radiation Product Using Smoothing Spline. IEEE Transactions on Geoscience and Remote Sensing 54:2, pages 1156-1169.
Crossref
Cunbo Han, Yaoming Ma, Xuelong Chen & Zhongbo Su. (2016) Estimates of land surface heat fluxes of the Mt. Everest region over the Tibetan Plateau utilizing ASTER data. Atmospheric Research 168, pages 180-190.
Crossref
Erfan Haghighi & Dani Or. (2015) Interactions of bluff-body obstacles with turbulent airflows affecting evaporative fluxes from porous surfaces. Journal of Hydrology 530, pages 103-116.
Crossref
Leidi Wang, Daren Lü & Qing He. (2015) The impact of surface properties on downward surface shortwave radiation over the Tibetan Plateau. Advances in Atmospheric Sciences 32:6, pages 759-771.
Crossref
Pukar Man Amatya, Yaoming Ma, Cunbo Han, Binbin Wang & Lochan Prasad Devkota. (2015) Estimation of net radiation flux distribution on the southern slopes of the central Himalayas using MODIS data. Atmospheric Research 154, pages 146-154.
Crossref
Laigang Wang & Kaicun Wang. (2015) Impacts of Dem Uncertainty on Estimated Surface Solar Radiation and Extracted River Network. Bulletin of the American Meteorological Society 96:2, pages 297-304.
Crossref
Xiaotong Zhang, Shunlin Liang, Gongqi Zhou, Haoran Wu & Xiang Zhao. (2014) Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sensing of Environment 152, pages 318-332.
Crossref
Shunlin Liang, Xiaotong Zhang, Zhiqiang Xiao, Jie Cheng, Qiang Liu & Xiang ZhaoShunlin Liang, Xiaotong Zhang, Zhiqiang Xiao, Jie Cheng, Qiang Liu & Xiang Zhao. 2014. Global LAnd Surface Satellite (GLASS) Products. Global LAnd Surface Satellite (GLASS) Products 143 159 .
. 2012. Advanced Remote Sensing. Advanced Remote Sensing 127 173 .
Jingxue Yang & Yunpeng Wang. (2011) Estimating evapotranspiration fraction by modeling two-dimensional space of NDVI/albedo and day–night land surface temperature difference: A comparative study. Advances in Water Resources 34:4, pages 512-518.
Crossref
Jingfen Sheng, John P. Wilson & Sujin Lee. (2009) Comparison of land surface temperature (LST) modeled with a spatially-distributed solar radiation model (SRAD) and remote sensing data. Environmental Modelling & Software 24:3, pages 436-443.
Crossref
Youngryel Ryu, Sinkyu Kang, Sang-Ki Moon & Joon Kim. (2008) Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days. Agricultural and Forest Meteorology 148:10, pages 1538-1552.
Crossref
Gaoli Su, Xiaozhou Xin & Qinhuo Liu. (2008) Estimation of Global Solar Irradiance at the Complicate Terrains in Zhejiang Province, China. Estimation of Global Solar Irradiance at the Complicate Terrains in Zhejiang Province, China.
Tao Zheng, Shunlin Liang & Kaicun Wang. (2008) Estimation of Incident Photosynthetically Active Radiation from GOES Visible Imagery. Journal of Applied Meteorology and Climatology 47:3, pages 853-868.
Crossref
Kaicun Wang, Pucai Wang, Zhanqing Li, M. Cribb & Michael Sparrow. (2007) A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. Journal of Geophysical Research: Atmospheres 112:D15.
Crossref
T. Zheng & S. Liang. (2006) Deriving Photosynthetically Active Radiation using GOES Visible Band Data. Deriving Photosynthetically Active Radiation using GOES Visible Band Data.
Kaicun Wang, Zhanqing Li & M. Cribb. (2006) Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sensing of Environment 102:3-4, pages 293-305.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.