280
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Measuring wheat nitrogen status from space and ground‐based platform

&
Pages 549-567 | Received 30 Jan 2004, Accepted 13 Jan 2005, Published online: 22 Feb 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Xiaobin Xu, Hongchun Zhu, Zhenhai Li, Jianwen Wang & Guijun Yang. (2020) A nitrogen spectral response model and nitrogen estimation of summer maize during the entire growth period. International Journal of Remote Sensing 41:5, pages 1867-1883.
Read now
Rahul Tripathi, A. K. Nayak, R. Raja, Mohammad Shahid, S. Mohanty, B. Lal, Priyanka Gautam, B. B. Panda, Anjani Kumar & R. N. Sahoo. (2017) Site-Specific Nitrogen Management in Rice Using Remote Sensing and Geostatistics. Communications in Soil Science and Plant Analysis 48:10, pages 1154-1166.
Read now

Articles from other publishers (28)

Joel Segarra, Fatima Zahra Rezzouk, Nieves Aparicio, Jon González-Torralba, Iker Aranjuelo, Adrian Gracia-Romero, Jose Luis Araus & Shawn C. Kefauver. (2023) Multiscale assessment of ground, aerial and satellite spectral data for monitoring wheat grain nitrogen content. Information Processing in Agriculture 10:4, pages 504-522.
Crossref
Matthew M. Conley, Alison L. Thompson & Reagan Hejl. (2023) Proximal Active Optical Sensing Operational Improvement for Research Using the CropCircle ACS-470, Implications for Measurement of Normalized Difference Vegetation Index (NDVI). Sensors 23:11, pages 5044.
Crossref
Junjie Ma, Bangyou Zheng & Yong He. (2022) Applications of a Hyperspectral Imaging System Used to Estimate Wheat Grain Protein: A Review. Frontiers in Plant Science 13.
Crossref
Xiaoyu Song, Guijun Yang, Xingang Xu, Dongyan Zhang, Chenghai Yang & Haikuan Feng. (2022) Winter Wheat Nitrogen Estimation Based on Ground-Level and UAV-Mounted Sensors. Sensors 22:2, pages 549.
Crossref
Telha H. Rehman, Andre Froes Borja Reis, Nadeem Akbar & Bruce A. Linquist. (2019) Use of Normalized Difference Vegetation Index to Assess N Status and Predict Grain Yield in Rice. Agronomy Journal 111:6, pages 2889-2898.
Crossref
Martina Corti, Daniele Cavalli, Giovanni Cabassi, Antonio Vigoni, Luigi Degano & Pietro Marino Gallina. (2018) Application of a low-cost camera on a UAV to estimate maize nitrogen-related variables. Precision Agriculture 20:4, pages 675-696.
Crossref
Felipe Brubeck-Hernandez, Tanya Vladimirova, Mike Pooley, Robin Thompson & Bruce Knight. (2019) Zone Management in Precision Agriculture Using Satellite Imagery. Zone Management in Precision Agriculture Using Satellite Imagery.
Stefano Marino & Arturo Alvino. (2019) Detection of Spatial and Temporal Variability of Wheat Cultivars by High-Resolution Vegetation Indices. Agronomy 9:5, pages 226.
Crossref
Lukas Prey & Urs Schmidhalter. (2019) Simulation of satellite reflectance data using high-frequency ground based hyperspectral canopy measurements for in-season estimation of grain yield and grain nitrogen status in winter wheat. ISPRS Journal of Photogrammetry and Remote Sensing 149, pages 176-187.
Crossref
Huiying Wu, Noam Levin, Leonie Seabrook, Ben Moore & Clive McAlpine. (2019) Mapping Foliar Nutrition Using WorldView-3 and WorldView-2 to Assess Koala Habitat Suitability. Remote Sensing 11:3, pages 215.
Crossref
Vaibhav Lodhi, Debashish Chakravarty & Pabitra Mitra. (2018) Hyperspectral Imaging for Earth Observation: Platforms and Instruments. Journal of the Indian Institute of Science 98:4, pages 429-443.
Crossref
Y.R. Lai, M.J. Pringle, P.M. Kopittke, N.W. Menzies, T.G. Orton & Y.P. Dang. (2018) An empirical model for prediction of wheat yield, using time-integrated Landsat NDVI. International Journal of Applied Earth Observation and Geoinformation 72, pages 99-108.
Crossref
Anna Chlingaryan, Salah Sukkarieh & Brett Whelan. (2018) Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture 151, pages 61-69.
Crossref
Francelino A. Rodrigues, Gerald Blasch, Pierre BlasDefournych, J. Ivan Ortiz-Monasterio, Urs Schulthess, Pablo J. Zarco-Tejada, James A. Taylor & Bruno Gérard. (2018) Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content. Remote Sensing 10:6, pages 930.
Crossref
Elfatih M. Abdel-Rahman, Onisimo Mutanga, John Odindi, Elhadi Adam, Alfred Odindo & Riyad Ismail. (2017) Estimating Swiss chard foliar macro- and micronutrient concentrations under different irrigation water sources using ground-based hyperspectral data and four partial least squares (PLS)-based (PLS1, PLS2, SPLS1 and SPLS2) regression algorithms. Computers and Electronics in Agriculture 132, pages 21-33.
Crossref
Wei Feng, Hai-Yan Zhang, Yuan-Shuai Zhang, Shuang-Li Qi, Ya-Rong Heng, Bin-Bin Guo, Dong-Yun Ma & Tian-Cai Guo. (2016) Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. Field Crops Research 198, pages 238-246.
Crossref
Francisco Agüera Vega, Fernando Carvajal Ramírez, Mónica Pérez Saiz & Francisco Orgaz Rosúa. (2015) Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering 132, pages 19-27.
Crossref
Mei-chen Feng, Lu-jie Xiao, Mei-jun Zhang, Wu-de Yang & Guang-wei Ding. (2014) Integrating Remote Sensing and GIS for Prediction of Winter Wheat (Triticum aestivum) Protein Contents in Linfen (Shanxi), China. PLoS ONE 9:1, pages e80989.
Crossref
Anas Fauzi, Andrew K. Skidmore, Hein van Gils, Martin Schlerf & Ignas M.A. Heitkönig. (2013) Shrimp pond effluent dominates foliar nitrogen in disturbed mangroves as mapped using hyperspectral imagery. Marine Pollution Bulletin 76:1-2, pages 42-51.
Crossref
Stein I. Øvergaard, Tomas Isaksson & Audun Korsaeth. (2013) Prediction of Wheat Yield and Protein Using Remote Sensors on Plots—Part I: Assessing near Infrared Model Robustness for Year and Site Variations. Journal of Near Infrared Spectroscopy 21:2, pages 117-131.
Crossref
Greg Lyle, Megan Lewis & Bertram Ostendorf. (2013) Testing the Temporal Ability of Landsat Imagery and Precision Agriculture Technology to Provide High Resolution Historical Estimates of Wheat Yield at the Farm Scale. Remote Sensing 5:4, pages 1549-1567.
Crossref
Frits K. van Evert, Paul van der Voet, Eric van Valkengoed, Lammert Kooistra & Corné Kempenaar. (2012) Satellite-based herbicide rate recommendation for potato haulm killing. European Journal of Agronomy 43, pages 49-57.
Crossref
Mats Söderström, Thomas Börjesson, Carl-Göran Pettersson, Knud Nissen & Olle Hagner. (2010) Prediction of protein content in malting barley using proximal and remote sensing. Precision Agriculture 11:6, pages 587-599.
Crossref
Pengfei Chen, Driss Haboudane, Nicolas Tremblay, Jihua Wang, Philippe Vigneault & Baoguo Li. (2010) New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sensing of Environment 114:9, pages 1987-1997.
Crossref
Stein Ivar Øvergaard, Tomas Isaksson, Knut Kvaal & Audun Korsaeth. (2010) Comparisons of Two Hand-Held, Multispectral Field Radiometers and a Hyperspectral Airborne Imager in Terms of Predicting Spring Wheat Grain Yield and Quality by Means of Powered Partial Least Squares Regression. Journal of Near Infrared Spectroscopy 18:4, pages 247-261.
Crossref
Silke Migdall, Heike Bach, Jans Bobert, Marc Wehrhan & Wolfram Mauser. (2009) Inversion of a canopy reflectance model using hyperspectral imagery for monitoring wheat growth and estimating yield. Precision Agriculture 10:6, pages 508-524.
Crossref
J. U. H. Eitel, D. S. Long, P. E. Gessler, E. R. HuntJr.Jr. & D. J. Brown. (2009) Sensitivity of Ground-Based Remote Sensing Estimates of Wheat Chlorophyll Content to Variation in Soil Reflectance. Soil Science Society of America Journal 73:5, pages 1715-1723.
Crossref
J. U. H. Eitel, D. S. Long, P. E. Gessler & E. R. Hunt. (2008) Combined Spectral Index to Improve Ground‐Based Estimates of Nitrogen Status in Dryland Wheat. Agronomy Journal 100:6, pages 1694-1702.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.