425
Views
49
CrossRef citations to date
0
Altmetric
Articles

Evaluation of MODIS water vapour products over China using radiosonde data

, , &
Pages 680-690 | Received 25 Aug 2014, Accepted 19 Nov 2014, Published online: 28 Jan 2015

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Hailei Liu, Huapin Li, Shihao Tang, Minzheng Duan, Shenglan Zhang, Xiaobo Deng & Juyang Hu. (2020) A physical algorithm for precipitable water vapour retrieval over land using passive microwave observations. International Journal of Remote Sensing 41:16, pages 6288-6306.
Read now
Shaoqi Gong, Daniel F. T. Hagan, Xinyi Wu & Guojie Wang. (2018) Spatio-temporal analysis of precipitable water vapour over northwest china utilizing MERSI/FY-3A products. International Journal of Remote Sensing 39:10, pages 3094-3110.
Read now

Articles from other publishers (47)

Yuhao Wu, Nan Jiang, Yan Xu, Ta-Kang Yeh, Ao Guo, Tianhe Xu, Song Li & Zhaorui Gao. (2024) Revealing the water vapor transport during the Henan “7.20” heavy rainstorm based on ERA5 and Real-Time GNSS. The Egyptian Journal of Remote Sensing and Space Sciences 27:2, pages 165-177.
Crossref
Xiangrong Yan, Weifang Yang, Nan Ding, Fenglin Gao & Yibo Peng. (2024) Improving MODIS-IR precipitable water vapor based on the FIDWFT model. Advances in Space Research 73:10, pages 4903-4921.
Crossref
Jiafei Xu & Zhizhao Liu. (2024) A novel machine learning-based approach for improving global correction of AIRS-derived water vapor satellite product. International Journal of Applied Earth Observation and Geoinformation 128, pages 103787.
Crossref
Yi Zhou, Xinzhi Wang & Chang Xu. (2024) Comprehensive evaluation of the precipitable water vapor products of Fengyun satellites via GNSS data over mainland China. Atmospheric Research 300, pages 107235.
Crossref
Jiafei Xu, Zhizhao Liu, Guan Hong & Yunchang Cao. (2024) A New Machine-Learning-Based Calibration Scheme for MODIS Thermal Infrared Water Vapor Product Using BPNN, GBDT, GRNN, KNN, MLPNN, RF, and XGBoost. IEEE Transactions on Geoscience and Remote Sensing 62, pages 1-12.
Crossref
Xiao Liu, Yong Wang, Wei Zhan & Tengli Yu. (2023) Improving MODIS Precipitable water vapour in mainland China based on the LSF model. Advances in Space Research 72:8, pages 3133-3149.
Crossref
Ramson Munyaradzi Nyamukondiwa, Necmi Cihan Orger, Daisuke Nakayama & Mengu Cho. (2023) A Study on the Derivation of Atmospheric Water Vapor Based on Dual Frequency Radio Signals and Intersatellite Communication Networks. Aerospace 10:9, pages 807.
Crossref
Ruyu Mei, Kebiao Mao, Jiancheng Shi, Jeffrey Nielson, Sayed M. Bateni, Fei Meng & Guoming Du. (2023) A Novel Physics-Statistical Coupled Paradigm for Retrieving Integrated Water Vapor Content Based on Artificial Intelligence. Remote Sensing 15:17, pages 4250.
Crossref
Yibo Zhao, Shaogang Lei, Guoqing Zhu, Yunxi Shi, Cangjiao Wang, Yuanyuan Li, Zhaorui Su & Weizhong Wang. (2023) An Algorithm to Retrieve Precipitable Water Vapor from Sentinel-2 Data. Remote Sensing 15:5, pages 1201.
Crossref
Zheng Du, Yibin Yao & Qingzhi Zhao. (2023) Novel Validation and Calibration Strategy for Total Precipitable Water Products of Fengyun-2 Geostationary Satellites. IEEE Transactions on Geoscience and Remote Sensing 61, pages 1-12.
Crossref
Yanyan Zhao, Hongwei Zhao, Junqiang Li & Gongwei Xiao. (2022) Comprehensive Validation and Calibration of MODIS PWV over Mainland China. Atmosphere 13:11, pages 1763.
Crossref
Liangke Huang, Xin Wang, Si Xiong, Junyu Li, Lilong Liu, Zhixiang Mo, Bolin Fu & Hongchang He. (2022) High-precision GNSS PWV retrieval using dense GNSS sites and in-situ meteorological observations for the evaluation of MERRA-2 and ERA5 reanalysis products over China. Atmospheric Research 276, pages 106247.
Crossref
F. Ebrahimi, A. Sam-Khaniani & F. Ghaderi. (2022) Long-term Study of Satellite Water Vapor Along with Meteorological Measurements at Synoptic Stations. Numerical Methods in Civil Engineering 6:3, pages 1-10.
Crossref
Zhong-Hu Jiao & Xihan Mu. (2022) Global validation of clear-sky models for retrieving land-surface downward longwave radiation from MODIS data. Remote Sensing of Environment 271, pages 112903.
Crossref
Yong Zhang, Jun Li, Zhenglong Li, Jing Zheng, Danqing Wu & Hongyu Zhao. (2022) FENGYUN-4A Advanced Geosynchronous Radiation Imager Layered Precipitable Water Vapor Products’ Comprehensive Evaluation Based on Quality Control System. Atmosphere 13:2, pages 290.
Crossref
Mohammad Rezaei & Mahdi Khazaei. (2022) Atmospheric precipitable water vapor over Iran using MODIS products: climatology and intercomparison. Meteorology and Atmospheric Physics 134:1.
Crossref
Neha Bhadauria, Abhishek Chauhan, Rajnish Ranjan & Tanu Jindal. (2022) Variation in Aerosol Optical Depth (AOD), NO2 and Tropospheric Ozone Column during the Lockdown Period Amid COVID-19 Pandemic over India. Asian Journal of Chemistry 34:5, pages 1105-1112.
Crossref
Xiongwei Ma, Yibin Yao, Bao Zhang, Yuxin Qin, Qi Zhang & Hang Zhu. (2022) An Improved MODIS NIR PWV Retrieval Algorithm Based on an Artificial Neural Network Considering the Land-Cover Types. IEEE Transactions on Geoscience and Remote Sensing 60, pages 1-12.
Crossref
Jingshu Tan, Biyan Chen, Wei Wang, Wenkun Yu & Wujiao Dai. (2022) Evaluating Precipitable Water Vapor Products From Fengyun-4A Meteorological Satellite Using Radiosonde, GNSS, and ERA5 Data. IEEE Transactions on Geoscience and Remote Sensing 60, pages 1-12.
Crossref
Carlos L. Perez Diaz, Xiaoxiong Xiong, Aisheng Wu & Tiejun Chang. (2022) Terra and Aqua MODIS Thermal Emissive Bands Calibration and RVS Stability Assessments Using an In Situ Ocean Target . IEEE Transactions on Geoscience and Remote Sensing 60, pages 1-14.
Crossref
Wengang Zhang​​​​​​​, Ling Wang, Yang Yu, Guirong Xu, Xiuqing Hu, Zhikang Fu & Chunguang Cui. (2021) Global evaluation of the precipitable-water-vapor product from MERSI-II (Medium Resolution Spectral Imager) on board the Fengyun-3D satellite. Atmospheric Measurement Techniques 14:12, pages 7821-7834.
Crossref
Ling Wang, Xiuqing Hu, Na Xu & Lin Chen. (2020) Water Vapor Retrievals from Near-infrared Channels of the Advanced Medium Resolution Spectral Imager Instrument onboard the Fengyun-3D Satellite. Advances in Atmospheric Sciences 38:8, pages 1351-1366.
Crossref
Dantong Zhu, Kefei Zhang, Liu Yang, Suqin Wu & Longjiang Li. (2021) Evaluation and Calibration of MODIS Near-Infrared Precipitable Water Vapor over China Using GNSS Observations and ERA-5 Reanalysis Dataset. Remote Sensing 13:14, pages 2761.
Crossref
Zhaohui Xiong, Xiaogong Sun, Jizhang Sang & Xiaomin Wei. (2021) Modify the Accuracy of MODIS PWV in China: A Performance Comparison Using Random Forest, Generalized Regression Neural Network and Back-Propagation Neural Network. Remote Sensing 13:11, pages 2215.
Crossref
Jingna Bai, Yidong Lou, Weixing Zhang, Yaozong Zhou, Zhenyi Zhang & Chuang Shi. (2021) Assessment and calibration of MODIS precipitable water vapor products based on GPS network over China. Atmospheric Research 254, pages 105504.
Crossref
Jia He & Zhizhao Liu. (2021) Refining MODIS NIR Atmospheric Water Vapor Retrieval Algorithm Using GPS-Derived Water Vapor Data. IEEE Transactions on Geoscience and Remote Sensing 59:5, pages 3682-3694.
Crossref
Yizhu Wang, Hailei Liu, Yong Zhang, Minzheng Duan, Shihao Tang & Xiaobo Deng. (2021) Validation of FY-4A AGRI layer precipitable water products using radiosonde data. Atmospheric Research 253, pages 105502.
Crossref
Zhaohui Xiong, Bao Zhang, Jizhang Sang, Xiaogong Sun & Xiaoming Wei. (2021) Fusing Precipitable Water Vapor Data in CHINA at Different Timescales Using an Artificial Neural Network. Remote Sensing 13:9, pages 1720.
Crossref
Pierre Bosser, Olivier Bock, Cyrille Flamant, Sandrine Bony & Sabrina Speich. (2021) Integrated water vapour content retrievals from ship-borne GNSS receivers during EUREC<sup>4</sup>A. Earth System Science Data 13:4, pages 1499-1517.
Crossref
Ruonan Wang & Yuanbo Liu. (2020) Recent declines in global water vapor from MODIS products: Artifact or real trend?. Remote Sensing of Environment 247, pages 111896.
Crossref
Jia He & Zhizhao Liu. (2020) Water Vapor Retrieval From MODIS NIR Channels Using Ground-Based GPS Data. IEEE Transactions on Geoscience and Remote Sensing 58:5, pages 3726-3737.
Crossref
Xingxing Zhang, Ning Lu, Hou Jiang & Ling Yao. (2020) Evaluation of Reanalysis Surface Incident Solar Radiation Data in China. Scientific Reports 10:1.
Crossref
Ji-Long Chen, Lei He, Hong Yang, Qiao Chen, Mao-Hua Ma, Xiao-Xiao Wang & Zuo-Lin Xiao. (2020) Coupling meteorological variables with Moderate Resolution Imaging Spectroradiometer atmospheric products for estimating global solar radiation. Energy Conversion and Management 205, pages 112383.
Crossref
Ali Sam Khaniani, Zahir Nikraftar & Salar Zakeri. (2020) Evaluation of MODIS Near-IR water vapor product over Iran using ground-based GPS measurements. Atmospheric Research 231, pages 104657.
Crossref
Shaoqi Gong, Daniel F. T. Hagan & Cunjie Zhang. (2019) Analysis on Precipitable Water Vapor over the Tibetan Plateau Using FengYun-3A Medium Resolution Spectral Imager Products. Journal of Sensors 2019, pages 1-12.
Crossref
Qi Zhou, Hailei Liu, Shenglan Zhang & Xiaobo Deng. (2019) Sensitivity analyses of precipitable water vapor retrieval from the ground-based infrared measurements in clear sky conditions. Journal of Applied Remote Sensing 13:04, pages 1.
Crossref
Shuhua Zhang, Xingong Li, Jiangfeng She & Xiaomin Peng. (2019) Assimilating remote sensing data into GIS-based all sky solar radiation modeling for mountain terrain. Remote Sensing of Environment 231, pages 111239.
Crossref
Ji-Ping Guan, Yan-Tong Yin, Li-Feng Zhang, Jing-Nan Wang & Ming-Yang Zhang. (2019) Comparison Analysis of Total Precipitable Water of Satellite-Borne Microwave Radiometer Retrievals and Island Radiosondes. Atmosphere 10:7, pages 390.
Crossref
Ning Lu. (2019) Biases and Abrupt Shifts of Monthly Precipitable Water from Terra MODIS. Remote Sensing 11:11, pages 1315.
Crossref
Liang Chang, Ruya Xiao, Abhnil Amtesh Prasad, Guoping Gao, Guiping Feng & Yu Zhang. (2019) Cloud mask-related differential linear adjustment model for MODIS infrared water vapor product. Remote Sensing of Environment 221, pages 650-664.
Crossref
Daniel Pérez-Ramírez, Alexander Smirnov, Rachel T. Pinker, Maksym Petrenko, Roberto Román, W. Chen, Charles Ichoku, Stefan Noël, Gonzalo Gonzalez Abad, Hassan Lyamani & Brent N. Holben. (2019) Precipitable water vapor over oceans from the Maritime Aerosol Network: Evaluation of global models and satellite products under clear sky conditions. Atmospheric Research 215, pages 294-304.
Crossref
Huifang Zhang, Yi Sun, Li Chang, Yu Qin, Jianjun Chen, Yan Qin, Jiaxing Du, Shuhua Yi & Yingli Wang. (2018) Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sensing 10:6, pages 851.
Crossref
Gokhan Gurbuz & Shuanggen Jin. (2017) Long‐time variations of precipitable water vapour estimated from GPS , MODIS and radiosonde observations in Turkey . International Journal of Climatology 37:15, pages 5170-5180.
Crossref
Ke Gui, Huizheng Che, Quanliang Chen, Zhaoliang Zeng, Haizhi Liu, Yaqiang Wang, Yu Zheng, Tianze Sun, Tingting Liao, Hong Wang & Xiaoye Zhang. (2017) Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmospheric Research 197, pages 461-473.
Crossref
Ke Gui, Huizheng Che, Quanliang Chen, Zhaoliang Zeng, Yu Zheng, Qichao Long, Tianze Sun, Xinyu Liu, Yaqiang Wang, Tingting Liao, Jie Yu, Hong Wang & Xiaoye Zhang. (2017) Water vapor variation and the effect of aerosols in China. Atmospheric Environment 165, pages 322-335.
Crossref
Yan Wang, Kun Yang, Zhengyang Pan, Jun Qin, Deliang Chen, Changgui Lin, Yingying Chen, Lazhu, Wenjun Tang, Menglei Han, Ning Lu & Hui Wu. (2017) Evaluation of Precipitable Water Vapor from Four Satellite Products and Four Reanalysis Datasets against GPS Measurements on the Southern Tibetan Plateau. Journal of Climate 30:15, pages 5699-5713.
Crossref
Hailei Liu, Shihao Tang, Juyang Hu, Shenglan Zhang & Xiaobo Deng. (2017) An improved physical split-window algorithm for precipitable water vapor retrieval exploiting the water vapor channel observations. Remote Sensing of Environment 194, pages 366-378.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.