499
Views
59
CrossRef citations to date
0
Altmetric
Original Articles

Turbulent Convective Heat Transfer and Pressure Drop of Graphene–Water Nanofluid Flowing Inside a Horizontal Circular Tube

, , , &
Pages 1230-1240 | Received 09 Aug 2013, Accepted 10 Aug 2013, Published online: 18 Jun 2014

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

Amir Akbari, Seyed Ali Alavi Fazel, Sarah Maghsoodi & Amirhossein Shahbazi Kootenaei. (2019) Thermo-physical and stability properties of raw and functionalization of graphene nanoplatelets-based aqueous nanofluids. Journal of Dispersion Science and Technology 40:1, pages 17-24.
Read now
Rad Sadri, K. Zangeneh Kamali, M. Hosseini, Nashrul Zubir, S. N. Kazi, Goodarz Ahmadi, Mahidzal Dahari, N. M. Huang & A. M. Golsheikh. (2017) Experimental study on thermo-physical and rheological properties of stable and green reduced graphene oxide nanofluids: Hydrothermal assisted technique. Journal of Dispersion Science and Technology 38:9, pages 1302-1310.
Read now
Sajjad Rashidi, Farshad Farzin, Ahmad Amiri, Mehdi Shanbedi, Masoud Rahimipanah, Maryam Savari, Zohreh Taghizadeh-Tabari & Saeed Zeinali Heris. (2016) Determination of the Heat Transfer Coefficient of Metal Oxide Based Water Nanofluids in a Laminar Flow Regime Using an Adaptive Neuro-Fuzzy Inference System. Journal of Dispersion Science and Technology 37:9, pages 1277-1286.
Read now
Ahmad Amiri, Mehdi Shanbedi & Mohammad Javad AliAkbarzade. (2016) The Specific Heat Capacity, Effective Thermal Conductivity, Density, and Viscosity of Coolants Containing Carboxylic Acid Functionalized Multi-Walled Carbon Nanotubes. Journal of Dispersion Science and Technology 37:7, pages 949-955.
Read now
S. Tazarv, M. Saffar-Avval, F. Khalvati, E. Mirzaee & Z. Mansoori. (2016) Experimental Investigation of Saturated Flow Boiling Heat Transfer to TiO2/R141b Nanorefrigerant. Experimental Heat Transfer 29:2, pages 188-204.
Read now
Ayesha Kausar. (2016) Bucky Papers of Poly(Methyl Methacrylate-co-Methacrylic acid)/Polyamide 6 and Graphene Oxide-Montmorillonite. Journal of Dispersion Science and Technology 37:1, pages 66-72.
Read now

Articles from other publishers (53)

L. Syam Sundar, Hiren K. Mewada & Sambasivam Sangaraju. (2024) Experimental and ensemble machine learning analyses of heat transfer, friction factor and thermal performance factor of rGO/water nanofluids in a tube. International Journal of Thermofluids 21, pages 100557.
Crossref
Janusz T. Cieśliński & Przemysław Kozak. (2023) Experimental Investigations of Forced Convection of Nanofluids in Smooth, Horizontal, Round Tubes: A Review. Energies 16:11, pages 4415.
Crossref
José Pereira, Ana Moita & António Moreira. (2023) Fewer Dimensions for Higher Thermal Performance: A Review on 2D Nanofluids. Applied Sciences 13:6, pages 4070.
Crossref
K. Suresh, P. Selvakumar, G. Kumaresan, M. Vijayakumar, M. Ravikumar & N. Rachael Jenita. (2022) A critical review on the effect of morphology, stability, and thermophysical properties of graphene nanoparticles in nanolubricants and nanofluids. Journal of Thermal Analysis and Calorimetry 148:2, pages 451-472.
Crossref
Sakti Pada Shit, N. K. Ghosh, Sudipta Pal & Kartik Sau. (2022) Particle size and temperature effects on thermal conductivity of aqueous Ag nanofluids: modelling and simulations using classical molecular dynamics. The European Physical Journal D 76:12.
Crossref
Felipe Lozano-Steinmetz, María Paz Ramírez-Navarro, Leonardo Vivas, Diego A. Vasco, Dinesh Pratap Singh & Carlos Zambra-Sazo. (2022) Thermal and Rheological Characterization of Aqueous Nanofluids Based on Reduced Graphene Oxide (rGO) with Manganese Dioxide Nanocomposites (MnO2). Nanomaterials 12:17, pages 3042.
Crossref
Mehmet Gürdal, Kamil Arslan, Engin Gedik & Alina Adriana Minea. (2022) Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review. Renewable and Sustainable Energy Reviews 162, pages 112453.
Crossref
Suci A.C. Natalya, Grandprix T.M. Kadja, Noerma J. Azhari, Munawar Khalil & Adroit T.N. Fajar. (2022) Two-dimensional (2D) nanomaterials for enhanced oil recovery (EOR): A review. FlatChem 34, pages 100383.
Crossref
Duygu Yılmaz Aydın & Metin Gürü. (2021) Nanofluids: preparation, stability, properties, and thermal performance in terms of thermo-hydraulic, thermodynamics and thermo-economic analysis. Journal of Thermal Analysis and Calorimetry 147:14, pages 7631-7664.
Crossref
Brian Reding & Mohamed Khayet. (2022) Thermal conductivity and thermal diffusivity of fullerene-based nanofluids. Scientific Reports 12:1.
Crossref
Jingqiong Gao, Wei Yu, Huaqing Xie & Omid Mahian. (2022) Graphene-based deep eutectic solvent nanofluids with high photothermal conversion and high-grade energy. Renewable Energy 190, pages 935-944.
Crossref
Jia-nan Huang, Liu Yang & Yilin Xie. (2021) Why the thermal conductivity of graphene nanofluids is extremely high? A new model based on anisotropy and particle-free renovation. Journal of Molecular Liquids 341, pages 117326.
Crossref
Mostafa Naderi & Arash Karimipour. (2021) Two-phase solid/liquid mixture of water/carbon nanotubes at the equilibration phase of atomic structures: Atomic value effects in a microchannel using the molecular dynamics method. Journal of Molecular Liquids 339, pages 116820.
Crossref
Luiz U.R. Sica, Guilherme C.M. Nobre, Edwin M.C. Contreras, Enio P. Bandarra Filho, Paul O. Sotomayor & José A.R. Parise. (2021) Heat transfer nanofluids for trigeneration systems: fabrication and experimental investigation of viscosity at below-ambient temperatures. International Journal of Refrigeration 129, pages 163-174.
Crossref
Hamid Loulijat & Hassane Moustabchir. (2021) A Study of the Effects of Graphene Nanosheets on the Thermal Conductivity of Nanofluid (Argon-Graphene) Using Reverse Nonequilibrium Molecular Dynamics Method. International Journal of Thermophysics 42:8.
Crossref
Luiz U. R. Sica, Edwin M. C. Contreras, Enio P. Bandarra Filho & José A. R. Parise. (2021) An experimental viscosity investigation on the use of non‐Newtonian graphene heat transfer nanofluids at below‐ambient temperatures . International Journal of Energy Research 45:10, pages 14530-14546.
Crossref
Mehdi Azizi & Bizhan Honarvar. (2020) Synthesis of highly stable nanofluids including polyvinyl alcohol-treated graphene oxide for improved heat dissipation in a tubular heat exchanger. Journal of Thermal Analysis and Calorimetry 145:1, pages 13-25.
Crossref
Naser Ali, Ammar M. Bahman, Nawaf F. Aljuwayhel, Shikha A. Ebrahim, Sayantan Mukherjee & Ali Alsayegh. (2021) Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review. Nanomaterials 11:6, pages 1628.
Crossref
T Balaji, C Selvam & D Mohan Lal. (2021) A Review on Electronics Cooling using Nanofluids. IOP Conference Series: Materials Science and Engineering 1130:1, pages 012007.
Crossref
Madderla Sandhya, D. Ramasamy, K. Sudhakar, K. Kadirgama, M. Samykano, W.S.W. Harun, G. Najafi, M. Mofijur & Mohamed Mazlan. (2021) A systematic review on graphene-based nanofluids application in renewable energy systems: Preparation, characterization, and thermophysical properties. Sustainable Energy Technologies and Assessments 44, pages 101058.
Crossref
Nidal H. Abu-Hamdeh, Eydhah Almatrafi, M. Hekmatifar, D. Toghraie & Ali Golmohammadzadeh. (2021) Molecular dynamics simulation of the thermal properties of the Cu-water nanofluid on a roughed Platinum surface: Simulation of phase transition in nanofluids. Journal of Molecular Liquids 327, pages 114832.
Crossref
Kamal Ghani Dehkordi, Arash Karimipour, Masoud Afrand, Davood Toghraie & Amir Homayoon Meghdadi Isfahani. (2021) Molecular dynamics simulation concerning nanofluid boiling phenomenon affected by the external electric field: Effects of number of nanoparticles through Pt, Fe, and Au microchannels. Journal of Molecular Liquids 324, pages 114775.
Crossref
Bharat Bhanvase & Divya Barai. 2021. Nanofluids for Heat and Mass Transfer. Nanofluids for Heat and Mass Transfer 69 97 .
Amirhosein Mosavi, Maboud Hekmatifar, As'ad Alizadeh, Davood Toghraie, Roozbeh Sabetvand & Aliakbar Karimipour. (2020) The molecular dynamics simulation of thermal manner of Ar/Cu nanofluid flow: The effects of spherical barriers size. Journal of Molecular Liquids 319, pages 114183.
Crossref
Younes Menni, Ali J. Chamkha & Houari Ameur. (2020) Advances of nanofluids in heat exchangers—A review. Heat Transfer 49:8, pages 4321-4349.
Crossref
Ali Alsayegh & Naser Ali. (2020) Gas Turbine Intercoolers: Introducing Nanofluids—A Mini-Review. Processes 8:12, pages 1572.
Crossref
Thong Le Ba, Omid Mahian, Somchai Wongwises & Imre Miklós Szilágyi. (2020) Review on the recent progress in the preparation and stability of graphene-based nanofluids. Journal of Thermal Analysis and Calorimetry 142:3, pages 1145-1172.
Crossref
Maboud Hekmatifar, Davood Toghraie, Babak Mehmandoust, Farshid Aghadavoudi & S. Ali Eftekhari. (2020) Molecular dynamics simulation of the phase transition process in the atomic scale for Ar/Cu nanofluid on the platinum plates. International Communications in Heat and Mass Transfer 117, pages 104798.
Crossref
Kamal Ghani Dehkordi, Arash Karimipour, Masoud Afrand, Davood Toghraie & Amir Homayoon Meghdadi Isfahani. (2020) The Electric Field and Microchannel Type Effects on H2O/Fe3O4 Nanofluid Boiling Process: Molecular Dynamics Study. International Journal of Thermophysics 41:9.
Crossref
Likhan Das, Khairul Habib, R. Saidur, Navid Aslfattahi, Syed Mohd Yahya & Fazlay Rubbi. (2020) Improved Thermophysical Properties and Energy Efficiency of Aqueous Ionic Liquid/MXene Nanofluid in a Hybrid PV/T Solar System. Nanomaterials 10:7, pages 1372.
Crossref
Shani Ligati, Avia Ohayon-Lavi, Jared Keyes, Gennady Ziskind & Oren Regev. (2020) Enhancing thermal conductivity in graphene-loaded paint: Effects of phase change, rheology and filler size. International Journal of Thermal Sciences 153, pages 106381.
Crossref
Divya P. Barai, Bharat A. Bhanvase & Shirish H. Sonawane. (2020) A Review on Graphene Derivatives-Based Nanofluids: Investigation on Properties and Heat Transfer Characteristics. Industrial & Engineering Chemistry Research 59:22, pages 10231-10277.
Crossref
Yuanzhou Zheng, Xinzhu Zhang, Amin Shahsavar, Quyen Nguyen & Sara Rostami. (2020) Experimental evaluating the rheological behavior of ethylene glycol under graphene nanosheets loading. Powder Technology 367, pages 788-795.
Crossref
Koray Karabulut, Ertan Buyruk & Ferhat Kilinc. (2020) Experimental and numerical investigation of convection heat transfer in a circular copper tube using graphene oxide nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42:5.
Crossref
Mehdi Bahiraei & Saeed Heshmatian. (2019) Graphene family nanofluids: A critical review and future research directions. Energy Conversion and Management 196, pages 1222-1256.
Crossref
Vishnuprasad S, Haribabu K & Perarasu V.T. (2019) Experimental study on the convective heat transfer performance and pressure drop of functionalized graphene nanofluids in electronics cooling system. Heat and Mass Transfer 55:8, pages 2221-2234.
Crossref
Gangtao Liang & Issam Mudawar. (2019) Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. International Journal of Heat and Mass Transfer 136, pages 324-354.
Crossref
Adeel Arshad, Mark Jabbal, Yuying Yan & David Reay. (2019) A review on graphene based nanofluids: Preparation, characterization and applications. Journal of Molecular Liquids 279, pages 444-484.
Crossref
KORAY KARABULUT, Ertan BUYRUK & Ferhat KILINÇ. (2019) Grafen Oksit (GO)-Su Nanoakışkanının Taşınım Isı Transferi ve Basınç Düşüşü Artışı Üzerinde Boru Çapı Etkisinin Deneysel ve Sayısal Olarak İncelenmesi. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, pages 282-301.
Crossref
Hicham Zerradi. (2018) Numerical simulation of thermal conductivity of aqueous nanofluids containing graphene nanosheets using molecular dynamics simulation. MOJ Applied Bionics and Biomechanics 2:6.
Crossref
Mohammad-Ali Ahmadi, Mohammad Hossein Ahmadi, Morteza Fahim Alavi, Mohammad Reza Nazemzadegan, Roghayeh Ghasempour & Shahaboddin Shamshirband. (2018) Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach. Journal of the Taiwan Institute of Chemical Engineers 91, pages 383-395.
Crossref
M. Javanmard, M.H. Taheri, M. Abbasi & S.M. Ebrahimi. (2018) Heat transfer analysis of hydromagnetic water–graphene oxide nanofluid flow in the channel with asymmetric forced convection on walls. Chemical Engineering Research and Design 136, pages 816-824.
Crossref
Yi Wang, Hussein Alawai Ibrahim Al-Saaidi, Minsuk Kong & Jorge L. Alvarado. (2018) Thermophysical performance of graphene based aqueous nanofluids. International Journal of Heat and Mass Transfer 119, pages 408-417.
Crossref
V. Mikkola, S. Puupponen, H. Granbohm, K. Saari, T. Ala-Nissila & A. Seppälä. (2018) Influence of particle properties on convective heat transfer of nanofluids. International Journal of Thermal Sciences 124, pages 187-195.
Crossref
D. Cabaleiro, L. Colla, S. Barison, L. Lugo, L. Fedele & S. Bobbo. (2017) Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile. Nanoscale Research Letters 12:1.
Crossref
C. Selvam, T. Balaji, D. Mohan Lal & Sivasankaran Harish. (2017) Convective heat transfer coefficient and pressure drop of water-ethylene glycol mixture with graphene nanoplatelets. Experimental Thermal and Fluid Science 80, pages 67-76.
Crossref
Ali Aminian. (2016) Predicting the effective thermal conductivity of nanofluids for intensification of heat transfer using artificial neural network. Powder Technology 301, pages 288-309.
Crossref
Emad Sadeghinezhad, Mohammad Mehrali, R. Saidur, Mehdi Mehrali, Sara Tahan Latibari, Amir Reza Akhiani & Hendrik Simon Cornelis Metselaar. (2016) A comprehensive review on graphene nanofluids: Recent research, development and applications. Energy Conversion and Management 111, pages 466-487.
Crossref
Hossein Akhavan-Zanjani, Majid Saffar-Avval, Mohsen Mansourkiaei, Farhad Sharif & Mohammad Ahadi. (2016) Experimental investigation of laminar forced convective heat transfer of Graphene–water nanofluid inside a circular tube. International Journal of Thermal Sciences 100, pages 316-323.
Crossref
Ahmad Amiri, Goodarz Ahmadi, Mehdi Shanbedi, Mohammadmahdi Etemadi, Mohd Nashrul Mohd Zubir, B. T. Chew & S. N. Kazi. (2016) Heat transfer enhancement of water-based highly crumpled few-layer graphene nanofluids. RSC Advances 6:107, pages 105508-105527.
Crossref
Mohd Nashrul Mohd Zubir, A. Badarudin, S.N. Kazi, Nay Ming Huang, Misni Misran, Emad Sadeghinezhad, Mohammad Mehrali, N.I. Syuhada & Samira Gharehkhani. (2015) Experimental investigation on the use of reduced graphene oxide and its hybrid complexes in improving closed conduit turbulent forced convective heat transfer. Experimental Thermal and Fluid Science 66, pages 290-303.
Crossref
Mohammad Mehrali, Emad Sadeghinezhad, Marc A. Rosen, Amir Reza Akhiani, Sara Tahan Latibari, Mehdi Mehrali & Hendrik Simon Cornelis Metselaar. (2015) Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube. International Communications in Heat and Mass Transfer 66, pages 23-31.
Crossref
Farshad Farzin & Saeed Zeinali Heris. (2014) Experimental Measurement of Heat Transfer Coefficient of CuO/Turbine Oil Naonofluid in Circular Tube Under Constant Heat Flux Boundary Condition. Journal of Dispersion Science and Technology, pages 141217111959003.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.