Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 19, 1997 - Issue 5
521
Views
56
CrossRef citations to date
0
Altmetric
Original Articles

Development of Transition Metal Phosphine Complexes as Electrocatalysts for CO2 and CO Reduction

Pages 307-325 | Received 10 Apr 1997, Published online: 23 Sep 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Javad B.M. Parambath, Najrul Hussain, Hussain Alawadhi, Yeji Park, Dionysios D. Dionysiou, Changseok Han & Ahmed A. Mohamed. (2022) Graphitic Carbon Nitride Platforms Modified with Gold-Aryl Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. Comments on Inorganic Chemistry 42:4, pages 249-270.
Read now
Jenbrie M. Kessete, Taye B. Demissie & Ahmed M. Mohammed. (2022) Computational mechanistic insights into hafnium catalyzed CO2 activation and reduction. Molecular Physics 120:5.
Read now

Articles from other publishers (54)

Kaeden Teindl, Brian O. Patrick & Eva M. Nichols. (2023) Linear Free Energy Relationships and Transition State Analysis of CO 2 Reduction Catalysts Bearing Second Coordination Spheres with Tunable Acidity . Journal of the American Chemical Society 145:31, pages 17176-17186.
Crossref
Jose L. Alvarez-Hernandez, Alison A. Salamatian, Ji Won Han & Kara L. Bren. (2022) Potential- and Buffer-Dependent Selectivity for the Conversion of CO 2 to CO by a Cobalt Porphyrin-Peptide Electrocatalyst in Water . ACS Catalysis 12:23, pages 14689-14697.
Crossref
Mohamed F Aly Aboud, Zeid A ALOthman & Abdulaziz A Bagabas. (2022) Impact of ammonia treatment and platinum group or nickel metal decoration on the activated carbon storage of carbon dioxide and methane. Materials Research Express 9:9, pages 095601.
Crossref
Francesca Marocco Stuardi, Arianna Tiozzo, Laura Rotundo, Julien Leclaire, Roberto Gobetto & Carlo Nervi. (2022) Efficient Electrochemical Reduction of CO 2 to Formate in Methanol Solutions by Mn‐Functionalized Electrodes in the Presence of Amines** . Chemistry – A European Journal 28:37.
Crossref
Barbora Vénosová, Ingrid Jelemenská, Jozef Kožíšek, Peter Rapta, Michal Zalibera, Michal Novotný, Vladimir B. Arion & Lukáš Bučinský. (2021) Ni Oxidation State and Ligand Saturation Impact on the Capability of Octaazamacrocyclic Complexes to Bind and Reduce CO2. Molecules 26:14, pages 4139.
Crossref
Jeffrey M. Barlow, Joseph W. Ziller & Jenny Y. Yang. (2021) Inhibiting the Hydrogen Evolution Reaction (HER) with Proximal Cations: A Strategy for Promoting Selective Electrocatalytic Reduction. ACS Catalysis 11:13, pages 8155-8164.
Crossref
Sk Amanullah, Paramita Saha, Abhijit Nayek, Md Estak Ahmed & Abhishek Dey. (2021) Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2 nd sphere interactions in catalysis . Chemical Society Reviews 50:6, pages 3755-3823.
Crossref
Juan J. Moreno, Shelby L. Hooe & Charles W. Machan. (2021) DFT Study on the Electrocatalytic Reduction of CO 2 to CO by a Molecular Chromium Complex . Inorganic Chemistry 60:6, pages 3635-3650.
Crossref
Muhammad Zaeem Idrees, Ibtasam Ilahi, Muhammad Zeeshan Ali & Zulqarnain Muhammad. (2021) Efficient palladium (II) electrocatalysts with thiophene anchored pyridinium amidates for CO2 reduction. Journal of CO2 Utilization 44, pages 101384.
Crossref
Maryam Abdinejad, Lukas F. B. Wilm, Fabian Dielmann & Heinz Bernhard Kraatz. (2020) Electroreduction of CO 2 Catalyzed by Nickel Imidazolin-2-ylidenamino-Porphyrins in Both Heterogeneous and Homogeneous Molecular Systems . ACS Sustainable Chemistry & Engineering 9:1, pages 521-530.
Crossref
Ning‐ning Shi, Wang‐jing Xie, Wei‐song Gao, Jin‐miao Wang, Shi‐fu Zhang, Yu‐hua Fan & Mei Wang. (2020) Effect of PDI ligand binding pattern on the electrocatalytic activity of two Ru(II) complexes for CO 2 reduction . Applied Organometallic Chemistry 34:4.
Crossref
Jeffrey M. Barlow & Jenny Y. Yang. (2019) Thermodynamic Considerations for Optimizing Selective CO 2 Reduction by Molecular Catalysts . ACS Central Science 5:4, pages 580-588.
Crossref
Brandon L. Mash, Adharsh Raghavan & Tong Ren. (2018) Ni II Complexes of C ‐Substituted Cyclam as Efficient Catalysts for Reduction of CO 2 to CO . European Journal of Inorganic Chemistry 2019:15, pages 2065-2070.
Crossref
Minglun Cheng, Yang Yu, Xin Zhou, Yi Luo & Mei Wang. (2018) Chemical Versatility of [FeFe]-Hydrogenase Models: Distinctive Activity of [μ-C 6 H 4 -1,2-(κ 2 -S) 2 ][Fe 2 (CO) 6 ] for Electrocatalytic CO 2 Reduction . ACS Catalysis 9:1, pages 768-774.
Crossref
Ilaria Gamba. (2018) Biomimetic Approach to CO 2 Reduction . Bioinorganic Chemistry and Applications 2018, pages 1-14.
Crossref
Robert Francke, Benjamin Schille & Michael Roemelt. (2018) Homogeneously Catalyzed Electroreduction of Carbon Dioxide—Methods, Mechanisms, and Catalysts. Chemical Reviews 118:9, pages 4631-4701.
Crossref
J. A. Therrien, M. O. Wolf & B. O. Patrick. (2018) Synthesis and comparison of nickel, palladium, and platinum bis(N-heterocyclic carbene) pincer complexes for electrocatalytic CO 2 reduction . Dalton Transactions 47:6, pages 1827-1840.
Crossref
Sergio Gonell & Alexander J.M. Miller. 2018. 1 69 .
Nathan A. Eberhardt & Hairong Guan. 2018. Pincer Compounds. Pincer Compounds 67 99 .
Gabriel A. Andrade, John L. DiMeglio, Eric T. Guardino, Glenn P.A. Yap & Joel Rosenthal. (2017) Synthesis and structure of palladium(II) complexes supported by bis-NHC pincer ligands for the electrochemical activation of CO2. Polyhedron 135, pages 134-143.
Crossref
Timothy D. Cook, Sarah F. Tyler, Caitlyn M. McGuire, Matthias Zeller, Phillip E. Fanwick, Dennis H. Evans, Dennis G. Peters & Tong Ren. (2017) Nickel Complexes of C-Substituted Cyclams and Their Activity for CO 2 and H + Reduction . ACS Omega 2:7, pages 3966-3976.
Crossref
Karan Malik, Surya Singh, Suddhasatwa Basu & Anil Verma. (2017) Electrochemical reduction of CO 2 for synthesis of green fuel . WIREs Energy and Environment 6:4.
Crossref
Shusaku Ikeyama & Yutaka Amao. (2017) An Artificial Co‐enzyme Based on the Viologen Skeleton for Highly Efficient CO 2 Reduction to Formic Acid with Formate Dehydrogenase . ChemCatChem 9:5, pages 833-838.
Crossref
Shusaku Ikeyama & Yutaka Amao. (2016) Novel Artificial Coenzyme Based on the Viologen Derivative for CO 2 Reduction Biocatalyst Formate Dehydrogenase . Chemistry Letters 45:11, pages 1259-1261.
Crossref
Sneha A. Akhade, Wenjia Luo, Xiaowa Nie, Aravind Asthagiri & Michael J. Janik. (2016) Theoretical insight on reactivity trends in CO 2 electroreduction across transition metals . Catalysis Science & Technology 6:4, pages 1042-1053.
Crossref
Michele Aresta, Angela Dibenedetto & Eugenio QuarantaMichele Aresta, Angela Dibenedetto & Eugenio Quaranta. 2016. Reaction Mechanisms in Carbon Dioxide Conversion. Reaction Mechanisms in Carbon Dioxide Conversion 311 345 .
Michele Aresta, Angela Dibenedetto & Eugenio QuarantaMichele Aresta, Angela Dibenedetto & Eugenio Quaranta. 2016. Reaction Mechanisms in Carbon Dioxide Conversion. Reaction Mechanisms in Carbon Dioxide Conversion 85 141 .
Jeffrey A. Therrien, Michael O. Wolf & Brian O. Patrick. (2015) Polyannulated Bis(N-heterocyclic carbene)palladium Pincer Complexes for Electrocatalytic CO 2 Reduction . Inorganic Chemistry 54:24, pages 11721-11732.
Crossref
Jeffrey A. Therrien, Michael O. Wolf & Brian O. Patrick. (2014) Electrocatalytic Reduction of CO 2 with Palladium Bis-N-heterocyclic Carbene Pincer Complexes . Inorganic Chemistry 53:24, pages 12962-12972.
Crossref
Joel Rosenthal. 2014. Progress in Inorganic Chemistry: Volume 59. Progress in Inorganic Chemistry: Volume 59 299 338 .
Daniel L. DuBois. (2014) Development of Molecular Electrocatalysts for Energy Storage. Inorganic Chemistry 53:8, pages 3935-3960.
Crossref
Amit Majumdar. (2014) Bioinorganic modeling chemistry of carbon monoxide dehydrogenases: description of model complexes, current status and possible future scopes. Dalton Transactions 43:32, pages 12135.
Crossref
Aaron M. Appel, John E. Bercaw, Andrew B. Bocarsly, Holger Dobbek, Daniel L. DuBois, Michel Dupuis, James G. Ferry, Etsuko Fujita, Russ Hille, Paul J. A. Kenis, Cheryl A. Kerfeld, Robert H. Morris, Charles H. F. Peden, Archie R. Portis, Stephen W. Ragsdale, Thomas B. Rauchfuss, Joost N. H. Reek, Lance C. Seefeldt, Rudolf K. Thauer & Grover L. Waldrop. (2013) Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation . Chemical Reviews 113:8, pages 6621-6658.
Crossref
Michele Aresta, Angela Dibenedetto & Antonella Angelini. (2013) The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371:1996, pages 20120111.
Crossref
J. Schneider & E. Fujita. 2013. Comprehensive Inorganic Chemistry II. Comprehensive Inorganic Chemistry II 475 504 .
M. Aresta, A. Dibenedetto & A. Angelini. 2013. Comprehensive Inorganic Chemistry II. Comprehensive Inorganic Chemistry II 563 586 .
Alessandro Lavacchi, Hamish Miller & Francesco VizzaAlessandro Lavacchi, Hamish Miller & Francesco Vizza. 2013. Nanotechnology in Electrocatalysis for Energy. Nanotechnology in Electrocatalysis for Energy 273 315 .
Yatendra S. Chaudhary, Thomas W. Woolerton, Christopher S. Allen, Jamie H. Warner, Elizabeth Pierce, Stephen W. Ragsdale & Fraser A. Armstrong. (2012) Visible light-driven CO 2 reduction by enzyme coupled CdS nanocrystals . Chem. Commun. 48:1, pages 58-60.
Crossref
Pratim Biswas, Wei-Ning Wang & Woo-Jin An. (2011) The energy-environment nexus: aerosol science and technology enabling solutions. Frontiers of Environmental Science & Engineering in China 5:3, pages 299-312.
Crossref
Han Zhou, Tongxiang Fan & Di Zhang. (2010) An Insight into Artificial Leaves for Sustainable Energy Inspired by Natural Photosynthesis. ChemCatChem 3:3, pages 513-528.
Crossref
Thomas W. Woolerton, Sally Sheard, Elizabeth Pierce, Stephen W. Ragsdale & Fraser A. Armstrong. (2011) CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy & Environmental Science 4:7, pages 2393.
Crossref
Neil V. Rees & Richard G. Compton. (2011) Electrochemical CO 2 sequestration in ionic liquids; a perspective . Energy Environ. Sci. 4:2, pages 403-408.
Crossref
Jonathan M. Smieja & Clifford P. Kubiak. (2010) Re(bipy-tBu)(CO) 3 Cl−improved Catalytic Activity for Reduction of Carbon Dioxide: IR-Spectroelectrochemical and Mechanistic Studies . Inorganic Chemistry 49:20, pages 9283-9289.
Crossref
Mette Mikkelsen, Mikkel Jørgensen & Frederik C. Krebs. (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3:1, pages 43-81.
Crossref
M. Rakowski Dubois & Daniel L. Dubois. (2009) Development of Molecular Electrocatalysts for CO 2 Reduction and H 2 Production/Oxidation . Accounts of Chemical Research 42:12, pages 1974-1982.
Crossref
Eric E. Benson, Clifford P. Kubiak, Aaron J. Sathrum & Jonathan M. Smieja. (2009) Electrocatalytic and homogeneous approaches to conversion of CO 2 to liquid fuels . Chem. Soc. Rev. 38:1, pages 89-99.
Crossref
James W. Raebiger, Jeffrey W. Turner, Bruce C. Noll, Calvin J. Curtis, Alex Miedaner, Brian Cox & Daniel L. DuBois. (2006) Electrochemical Reduction of CO 2 to CO Catalyzed by a Bimetallic Palladium Complex . Organometallics 25:14, pages 3345-3351.
Crossref
Daniel L. DuBois. 2010. Encyclopedia of Electrochemistry. Encyclopedia of Electrochemistry.
A. Deronzier & J.-C. Moutet. 2003. Comprehensive Coordination Chemistry II. Comprehensive Coordination Chemistry II 471 507 .
D.H. Gibson. 2003. Comprehensive Coordination Chemistry II. Comprehensive Coordination Chemistry II 595 602 .
Richard H. Heyn. 2002. Encyclopedia of Catalysis. Encyclopedia of Catalysis.
Hironori ArakawaMichele ArestaJohn N. ArmorMark A. BarteauEric J. BeckmanAlexis T. BellJohn E. BercawCarol CreutzEckhard DinjusDavid A. DixonKazunari DomenDaniel L. DuBoisJuergen EckertEtsuko FujitaDorothy H. GibsonWilliam A. GoddardD. Wayne GoodmanJay KellerGregory J. KubasHarold H. KungJames E. LyonsLeo E. ManzerTobin J. MarksKeiji MorokumaKenneth M. NicholasRoy PerianaLawrence QueJens Rostrup-NielsonWolfgang M. H. SachtlerLanny D. SchmidtAyusman SenGabor A. SomorjaiPeter C. StairB. Ray StultsWilliam Tumas. (2001) Catalysis Research of Relevance to Carbon Management:  Progress, Challenges, and Opportunities. Chemical Reviews 101:4, pages 953-996.
Crossref
Daniel L. DuBois & Douglas E. Berning. (2000) Hydricity of transition-metal hydrides and its role in CO2 reduction. Applied Organometallic Chemistry 14:12, pages 860-862.
Crossref
Ferenc Ungváry. (1999) Application of transition metals in hydroformylation annual survey covering the year 1998. Coordination Chemistry Reviews 188:1, pages 263-296.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.