Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 22, 2009 - Issue 4
180
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Statistical Assessment of Counter-Flow Vortex Tube Performance for Different Nozzle Numbers, Cold Mass Fractions, and Inlet Pressures Via Taguchi Method

, &
Pages 271-282 | Received 17 Apr 2008, Accepted 13 May 2008, Published online: 17 Sep 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Fachun Liang, Huazhong Wang & Jia Meng. (2021) Experimental investigation on heating performance of a counter-flow vortex tube. Experimental Heat Transfer 34:4, pages 314-328.
Read now
M. Attalla, H. Ahmed, M. S. Ahmed & A. A. El–Wafa. (2017) Experimental investigation of the effect of nozzle numbers on Ranque–Hilsch vortex tube performance. Experimental Heat Transfer 30:3, pages 253-265.
Read now

Articles from other publishers (22)

Ayhan Doğan, Murat Korkmaz & Volkan Kirmaci. (2023) Estimation of Ranque-Hilsch vortex tube performance by machine learning techniques. International Journal of Refrigeration 150, pages 77-88.
Crossref
Murat Korkmaz, Adil Binal, Hüseyin Kaya & Volkan Kırmacı. (2023) ANN based ternary diagrams for thermal performance of a Ranque Hilsch vortex tube with different working fluids. Thermal Science and Engineering Progress 40, pages 101803.
Crossref
Murat Korkmaz, Ayhan Doğan & Volkan Kırmacı. (2023) THERMAL TEMPERATURE ESTIMATION BY MACHINE LEARNING METHODS OF COUNTERFLOW RANQUE-HILSCH VORTEX TUBE USING DIFFERENT FLUIDS. Heat Transfer Research 54:12, pages 61-79.
Crossref
S. Y. Khan, U. Allauddin, S. M. F. Hasani, R. Khan & M. Arsalan. (2022) A CFD analysis on the effect of tube curvature, hot flow control valve profile, and inlet swirl on the thermal performance of curved vortex tubes. Journal of Thermal Analysis and Calorimetry 147:22, pages 12761-12778.
Crossref
Volkan Kırmacı, Evrim Guler & Hüseyin Kaya. (2022) Machine learning analysis of thermal separation of a ranque hilsch vortex tube with linear, kNN, SVM, and RF regression models. Journal of Intelligent & Fuzzy Systems 43:5, pages 6295-6306.
Crossref
Hitesh Thakare, Ashok Parekh, Arif Upletawala & Bhushan Behede. (2022) Application of mixed level design of Taguchi method to counter flow vortex tube. Materials Today: Proceedings 57, pages 2242-2249.
Crossref
Qijun Xu & Jing Xie. (2021) Numerical Simulation of the Effect of Different Numbers of Inlet Nozzles on Vortex Tubes. Processes 9:9, pages 1531.
Crossref
Hüseyin Kaya. (2020) Evaluation of performance of parallel connected vortex tubes using air, oxygen and carbondioxide with Taguchi method. Heat and Mass Transfer 57:1, pages 165-174.
Crossref
Hüseyin KAYA. (2020) Paralel Bağlı Vorteks Tüplerinin Performansı için Yapay Sinir Ağları Analizi. El-Cezeri Fen ve Mühendislik Dergisi.
Crossref
Junior Lagrandeur, Sébastien Poncet, Mikhail Sorin & Mohammed Khennich. (2019) Thermodynamic modeling and artificial neural network of air counterflow vortex tubes. International Journal of Thermal Sciences 146, pages 106097.
Crossref
Volkan Kirmaci & Hüseyin Kaya. (2018) Effects of working fluid, nozzle number, nozzle material and connection type on thermal performance of a Ranque–Hilsch vortex tube: A review. International Journal of Refrigeration 91, pages 254-266.
Crossref
Hüseyin Kaya, Fahrettin Günver & Volkan Kirmaci. (2018) Experimental investigation of thermal performance of parallel connected vortex tubes with various nozzle materials. Applied Thermal Engineering 136, pages 287-292.
Crossref
Volkan Kirmaci, Hüseyin Kaya & Ismail Cebeci. (2018) An experimental and exergy analysis of a thermal performance of a counter flow Ranque–Hilsch vortex tube with different nozzle materials. International Journal of Refrigeration 85, pages 240-254.
Crossref
M. Attalla, Hany Ahmed, M. Salem Ahmed & A. Abo El- Wafa. (2017) An experimental study of nozzle number on Ranque Hilsch counter-flow vortex tube. Experimental Thermal and Fluid Science 82, pages 381-389.
Crossref
Ismail Cebeci, Volkan Kirmaci & Umit Topcuoglu. (2016) The effects of orifice nozzle number and nozzle made of polyamide plastic and aluminum with different inlet pressures on heating and cooling performance of counter flow Ranque–Hılsch vortex tubes: An experimental investigation. International Journal of Refrigeration 72, pages 140-146.
Crossref
K D Devade & A T Pise. (2016) Optimization of thermal performance of Ranque Hilsch Vortex Tube: MADM techniques. IOP Conference Series: Earth and Environmental Science 40, pages 012073.
Crossref
Mohammad O. Hamdan, Basel Alsayyed & Emad Elnajjar. (2012) Nozzle parameters affecting vortex tube energy separation performance. Heat and Mass Transfer 49:4, pages 533-541.
Crossref
M. Guen, C. Natkaniec, J. Kammeyer, J. R. Seume, L. Adjlout & O. Imine. (2012) Effect of the conical-shape on the performance of vortex tube. Heat and Mass Transfer 49:4, pages 521-531.
Crossref
Kemal Polat & Volkan Kırmacı. (2011) Determining of gas type in counter flow vortex tube using pairwise fisher score attribute reduction method. International Journal of Refrigeration 34:6, pages 1372-1386.
Crossref
Kevser Dincer. (2011) Experimental investigation of the effects of threefold type Ranque–Hilsch vortex tube and six cascade type Ranque–Hilsch vortex tube on the performance of counter flow Ranque–Hilsch vortex tubes. International Journal of Refrigeration 34:6, pages 1366-1371.
Crossref
Kemal Polat & Volkan Kırmacı. (2011) Application of the output dependent feature scaling in modeling and prediction of performance of counter flow vortex tube having various nozzles numbers at different inlet pressures of air, oxygen, nitrogen and argon. International Journal of Refrigeration 34:6, pages 1387-1397.
Crossref
Fikret Kocabas, Murat Korkmaz, Ugur Sorgucu & Senayi Donmez. (2010) Modeling of heating and cooling performance of counter flow type vortex tube by using artificial neural network. International Journal of Refrigeration 33:5, pages 963-972.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.