Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 29, 2016 - Issue 1
677
Views
101
CrossRef citations to date
0
Altmetric
Articles

Investigation of Laminar Convective Heat Transfer of a Novel Tio2–Carbon Nanotube Hybrid Water-Based Nanofluid

, , &
Pages 124-138 | Received 06 Apr 2014, Accepted 09 Aug 2014, Published online: 27 Aug 2015

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (7)

Gopinath Mandal & Dulal Pal. (2023) Entropy analysis of magneto-radiative SWCNT-MWCNT/H2O hybrid nanofluid flow with slip boundary conditions. International Journal of Ambient Energy 44:1, pages 1017-1030.
Read now
Kartika Irene, Budi Kristiawan, Koji Enoki & Agung Tri Wijayanta. (2023) Impact of nanoparticles loading to a novel hybrid TiO2-CNTs/water nanofluid on thermal performance enhancement. Numerical Heat Transfer, Part A: Applications 0:0, pages 1-19.
Read now
Manik Singh Sambyal, Sudhir Kumar Singh & Deepak Sharma. (2022) Numerical investigation of heat transfer performance of microchannel with wall-mounted obstacles using hybrid nanofluids. International Journal of Ambient Energy 43:1, pages 7910-7921.
Read now
Surendra D. Barewar & Sandesh S. Chougule. (2021) Heat transfer characteristics and boiling heat transfer performance of novel Ag/ZnO hybrid nanofluid using free surface jet impingement. Experimental Heat Transfer 34:6, pages 531-546.
Read now
Shahram Fotowat, Serena Askar & Amir Fartaj. (2021) An Experimental Transient Response of a Heat Exchanger with the Al2O3/Water Nanofluid Mass Flow and Temperature Step Variations. Heat Transfer Engineering 42:12, pages 1002-1023.
Read now
D. MageshBabu, P. K. Nagarajan, Ravishankar Sathyamurthy & S. Suseel Jai Krishnan. (2017) Enhancing the thermal performance of AL2O3/DI water nanofluids in micro-fin tube equipped with straight and left-right twisted tapes in turbulent flow regime. Experimental Heat Transfer 30:4, pages 267-283.
Read now

Articles from other publishers (94)

Youngsuk Oh & Zhixiong Guo. (2024) APPLICABILITY OF MACHINE LEARNING TECHNIQUES IN PREDICTING SPECIFIC HEAT CAPACITY OF COMPLEX NANOFLUIDS. Heat Transfer Research 55:3, pages 39-60.
Crossref
Zhe Su, Yanhong Cheng, Zhifeng Liu, Jiayi Zhou, Decai Li & Ying Li. (2023) Experimental Study on Thermal Conductivity of Water-Based Magnetic Fluid Loaded with Different Nanoparticles. Nanomaterials 13:22, pages 2952.
Crossref
Md. Shahinur Islam, Saiful Islam & Md. Noor-A-Alam Siddiki. (2023) Numerical simulation with sensitivity analysis of MHD natural convection using Cu-TiO2-H2O hybrid nanofluids. International Journal of Thermofluids 20, pages 100509.
Crossref
Yuxuan Huang, Hongchao Li, Jincheng Hu, Chaoyu Xu & Xiaochuan Wang. (2023) Study on Enhanced Heat Transfer and Stability Characteristics of Al2O3–SiO2/Water Hybrid Nanofluids. International Journal of Thermophysics 44:10.
Crossref
Zafar Said, Misbah Iqbal, Aamir Mehmood, Thanh Tuan Le, Hafiz Muhammad Ali, Dao Nam Cao, Phuoc Quy Phong Nguyen & Nguyen Dang Khoa Pham. (2023) Nanofluids-based solar collectors as sustainable energy technology towards net-zero goal: Recent advances, environmental impact, challenges, and perspectives. Chemical Engineering and Processing - Process Intensification 191, pages 109477.
Crossref
G. Sriharan, S. Harikrishnan & Hakan F. Oztop. (2023) A review on thermophysical properties, preparation, and heat transfer enhancement of conventional and hybrid nanofluids utilized in micro and mini channel heat sink. Sustainable Energy Technologies and Assessments 58, pages 103327.
Crossref
L. Syam Sundar. (2023) Synthesis and characterization of hybrid nanofluids and their usage in different heat exchangers for an improved heat transfer rates: A critical review. Engineering Science and Technology, an International Journal 44, pages 101468.
Crossref
Veerakumar Chinnasamy, Jeonggyun Ham & Honghyun Cho. (2023) Comparative investigation of convective heat transfer and pressure drop characteristics of MWCNT, Fe3O4, and MWCNT/Fe3O4 nanofluids. Case Studies in Thermal Engineering 47, pages 103095.
Crossref
Preeti Prashar, Odelu Ojjela & Pravin Kashyap Kambhatla. (2023) Impact of needle size and distinct flow conditions on thermal performance of TiO 2 –MWCNTs hybrid nanofluid flow past thin needle using Casson fluid model . ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.
Crossref
Shahd A. Abd Al-Mohsen, Isam M. Abed & Farooq H. Ali. (2021) A numerical comparison of circular and corrugation heat sink for laminar CuO–water nano-fluid flow and heat transfer enhancement. Applied Nanoscience 13:4, pages 2739-2766.
Crossref
Humaira Yasmin, Solomon O. Giwa, Saima Noor & Mohsen Sharifpur. 2023. Nanofluid Applications for Advanced Thermal Solutions. Nanofluid Applications for Advanced Thermal Solutions 63 115 .
Mahesh Vaka, Mohammad Khalid & Rashmi Walvekar. 2023. Solar Energy Harvesting, Conversion, and Storage. Solar Energy Harvesting, Conversion, and Storage 75 92 .
Solomon O. Giwa, Ademola E. Adeleke, Mohsen Sharifpur & Josua P. Meyer. 2023. Materials for Advanced Heat Transfer Systems. Materials for Advanced Heat Transfer Systems 63 174 .
Hongchao Li, Xiaochuan Wang, Yueqin Li, Xiaoting Wen & Yi Hu. (2022) Effect of particle concentration on the flocculation and sedimentation of unstable Al2O3-SiO2/water hybrid nanofluid. Journal of Nanoparticle Research 24:12.
Crossref
Kavati Venkateswarlu, K. P. V. Krishna Varma & Uday Kumar Nutakki. (2022) Synthesis, characterization and application of mono-, hybrid and ternary nanofluids in hybrid photovoltaic thermal (PV/T) solar systems—a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering 44:11.
Crossref
Mohammad Hemmat Esfe, Davood Toghraie & Soheyl Alidoust. (2022) Experimental analysis on the rheological characteristics of MWCNT-ZnO (50:50)/5W30 oil non-Newtonian hybrid nanofluid to obtain a new correlation. Powder Technology 407, pages 117595.
Crossref
Humphrey Adun, Michael Adedeji, Mustafa Dagbasi & Akinola Babatunde. (2022) Amelioration of thermodynamic performance and environmental analysis of an integrated solar power generation system with storage capacities using optimized ternary hybrid nanofluids. Journal of Energy Storage 51, pages 104531.
Crossref
Neeti Arora & Munish Gupta. (2022) An experimental analysis of CTAB surfactant on thermo-physical properties and stability of MWCNT/water nanofluids. Applied Nanoscience 12:6, pages 1941-1966.
Crossref
Wisdom Etabiese Ukueje, Fidelis Ibiang Abam & Anthony Obi. (2022) A Perspective Review on Thermal Conductivity of Hybrid Nanofluids and Their Application in Automobile Radiator Cooling. Journal of Nanotechnology 2022, pages 1-51.
Crossref
Sukhdeep Singh & Rajeev Kukreja. (2022) Effect of binary mixed-surfactants and hybrid nanofluid on spray cooling heat transfer. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, pages 095440892210976.
Crossref
Temiloluwa O Scott, Daniel R E Ewim & Andrew C Eloka-Eboka. (2022) Hybrid nanofluids flow and heat transfer in cavities: a technological review. International Journal of Low-Carbon Technologies 17, pages 1104-1123.
Crossref
Ahmed S. Habeeb, Abdulhassan A. Karamallah & Sattar Aljabair. (2022) Review of computational multi-phase approaches of nano-fluids filled systems. Thermal Science and Engineering Progress 28, pages 101175.
Crossref
Javier P. Vallejo, Jose I. Prado & Luis Lugo. (2022) Hybrid or mono nanofluids for convective heat transfer applications. A critical review of experimental research. Applied Thermal Engineering 203, pages 117926.
Crossref
Hamid Mousavi, Seyed Mostafa Tabatabaee Ghomshe, Alimorad Rashidi & Masoumeh Mirzaei. (2021) Hybrids carbon quantum dots as new nanofluids for heat transfer enhancement in wet cooling towers. Heat and Mass Transfer 58:2, pages 309-320.
Crossref
Shriram S. Sonawane, Parag Thakur, Sparsh Bhaisare & Hussein A. Mohammed. 2022. Applications of Nanofluids in Chemical and Bio-medical Process Industry. Applications of Nanofluids in Chemical and Bio-medical Process Industry 185 204 .
Neeti Arora, Munish Gupta & Zafar Said. 2022. Hybrid Nanofluids. Hybrid Nanofluids 33 64 .
Y Akbar, U Akram, H Afsar, M W Javed & N Ullah. (2021) Flow and heat transportation in peristalsis of graphene-Fe 3 O 4 /H 2 O hybrid nanofluid with variable effective viscosity . Physica Scripta 96:11, pages 115005.
Crossref
Saeed Askari, Ehsanollah Ettefaghi, Alimorad Rashidi, Abdolvahab Seif, Jennifer A. Rudd, Julio A. Alonso & Saeed Khodabakhshi. (2021) Ultra-stable nanofluid containing Functionalized-Carbon Dots for heat transfer enhancement in Water/Ethylene glycol systems: Experimental and DFT studies. Energy Reports 7, pages 4222-4234.
Crossref
At-Tasneem Mohd Amin, Wan Azmi Wan Hamzah & Ahmed Nurye Oumer. (2021) Thermal conductivity and dynamic viscosity of mono and hybrid organic- and synthetic-based nanofluids: A critical review. Nanotechnology Reviews 10:1, pages 1624-1661.
Crossref
Changhui Liu, Yu Qiao, Peixing Du, Jiahao Zhang, Jiateng Zhao, Chenzhen Liu, Yutao Huo, Cong Qi, Zhonghao Rao & Yuying Yan. (2021) Recent advances of nanofluids in micro/nano scale energy transportation. Renewable and Sustainable Energy Reviews 149, pages 111346.
Crossref
Humphrey Adun, Ifeoluwa Wole-Osho, Eric C. Okonkwo, Doga Kavaz & Mustafa Dagbasi. (2021) A critical review of specific heat capacity of hybrid nanofluids for thermal energy applications. Journal of Molecular Liquids 340, pages 116890.
Crossref
Tahir Rasheed, Tariq Hussain, Muhammad Tuoqeer Anwar, Jazib Ali, Komal Rizwan, Muhammad Bilal, Fwzah H. Alshammari, Norah Alwadai & Amani Saleh Almuslem. (2021) Hybrid Nanofluids as Renewable and Sustainable Colloidal Suspensions for Potential Photovoltaic/Thermal and Solar Energy Applications. Frontiers in Chemistry 9.
Crossref
Adeola O. Borode, Noor A. Ahmed, Peter A. Olubambi, Mohsen Sharifpur & Josua P. Meyer. (2021) Investigation of the Thermal Conductivity, Viscosity, and Thermal Performance of Graphene Nanoplatelet-Alumina Hybrid Nanofluid in a Differentially Heated Cavity. Frontiers in Energy Research 9.
Crossref
Zoljargal Narankhishig, Jeonggyun Ham, Hoseong Lee & Honghyun Cho. (2021) Convective heat transfer characteristics of nanofluids including the magnetic effect on heat transfer enhancement - a review. Applied Thermal Engineering 193, pages 116987.
Crossref
M. Muneeshwaran, G. Srinivasan, P. Muthukumar & Chi-Chuan Wang. (2021) Role of hybrid-nanofluid in heat transfer enhancement – A review. International Communications in Heat and Mass Transfer 125, pages 105341.
Crossref
Hamed Eshgarf, Rasool Kalbasi, Akbar Maleki, Mostafa Safdari Shadloo & Arash karimipour. (2020) A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. Journal of Thermal Analysis and Calorimetry 144:5, pages 1959-1983.
Crossref
Arun Kumar Tiwari, Vijay Kumar, Zafar Said & H.K. Paliwal. (2021) A review on the application of hybrid nanofluids for parabolic trough collector: Recent progress and outlook. Journal of Cleaner Production 292, pages 126031.
Crossref
Tae Jong Choi, Myeong Soo Park, Sung Hyoun Kim & Seok Pil Jang. (2021) Experimental Study on the Effect of Nanoparticle Migration on the Convective Heat Transfer Coefficient of EG/Water-based Al2O3 Nanofluids. International Journal of Heat and Mass Transfer 169, pages 120903.
Crossref
Ovais Gulzar, Adnan Qayoum & Rajat Gupta. (2020) Experimental study on thermal conductivity of mono and hybrid Al 2 O 3 –TiO 2 nanofluids for concentrating solar collectors . International Journal of Energy Research 45:3, pages 4370-4384.
Crossref
Rashid Pourrajab, Aminreza Noghrehabadi, Mohammad Behbahani & Ebrahim Hajidavalloo. (2020) An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: experimental study. Journal of Thermal Analysis and Calorimetry 143:5, pages 3331-3343.
Crossref
Neeti Arora & Munish Gupta. (2020) Thermo-hydraulic performance of nanofluids in enhanced tubes - a review. Heat and Mass Transfer 57:3, pages 377-404.
Crossref
S.N.M. Zainon & W.H. Azmi. (2021) Recent Progress on Stability and Thermo-Physical Properties of Mono and Hybrid towards Green Nanofluids. Micromachines 12:2, pages 176.
Crossref
Laith M. Jasim, Hudhaifa Hamzah, Cetin Canpolat & Besir Sahin. (2021) Mixed convection flow of hybrid nanofluid through a vented enclosure with an inner rotating cylinder. International Communications in Heat and Mass Transfer 121, pages 105086.
Crossref
Mahir Faris Abdullah, Rozli Zulkifli, Hazim Moria, Asmaa Soheil Najm, Zambri Harun, Shahrir Abdullah, Wan Aizon Wan Ghopa & Noor Humam Sulaiman. (2021) Assessment of TiO2 Nanoconcentration and Twin Impingement Jet of Heat Transfer Enhancement—A Statistical Approach Using Response Surface Methodology. Energies 14:3, pages 595.
Crossref
Solomon O. Giwa, Mohsen Sharifpur, Mohammad H. Ahmadi, S. M. Sohel Murshed & Josua P. Meyer. (2021) Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe2O3. Nanomaterials 11:1, pages 136.
Crossref
E.n. TUGOLUKOV & Ail. J. ALİ. (2021) REVIEW ENHANCEMENT OF THERMAL CONDUCTIVITY AND HEAT TRANSFER USING CARBON NANOTUBE FOR NANOFLUIDS AND IONANOFLUIDS. Journal of Thermal Engineering 7:1, pages 66-90.
Crossref
Vittorio Loddo & Giovanni Camera Roda. 2021. Titanium Dioxide (Tio₂) and Its Applications. Titanium Dioxide (Tio₂) and Its Applications 267 307 .
S. O. Giwa, M. Momin, C. N. Nwaokocha, M. Sharifpur & J. P. Meyer. (2020) Influence of nanoparticles size, per cent mass ratio, and temperature on the thermal properties of water-based MgO–ZnO nanofluid: an experimental approach. Journal of Thermal Analysis and Calorimetry 143:2, pages 1063-1079.
Crossref
Aashray Sharma, Preeti Joshi & Jaspreet Hira. 2021. Advances in Fluid and Thermal Engineering. Advances in Fluid and Thermal Engineering 731 740 .
Mohammad Hemmat Esfe, Mehdi Bahiraei & Ashkan Mir. (2020) Application of conventional and hybrid nanofluids in different machining processes: A critical review. Advances in Colloid and Interface Science 282, pages 102199.
Crossref
S.O. Giwa, M. Sharifpur & J.P. Meyer. (2020) Experimental investigation into heat transfer performance of water-based magnetic hybrid nanofluids in a rectangular cavity exposed to magnetic excitation. International Communications in Heat and Mass Transfer 116, pages 104698.
Crossref
P. Sreedevi, P. Sudarsana Reddy & Ali Chamkha. (2020) Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Applied Sciences 2:7.
Crossref
Gabriela Huminic, Angel Huminic, Florian Dumitrache, Claudiu Fleacă & Ion Morjan. (2020) Study of the thermal conductivity of hybrid nanofluids: Recent research and experimental study. Powder Technology 367, pages 347-357.
Crossref
Saviz Zarrin & Felora Heshmatpour. (2020) Facile preparation of new nanohybrids for enhancing photocatalytic activity toward removal of organic dyes under visible light irradiation. Journal of Physics and Chemistry of Solids 140, pages 109271.
Crossref
Rasikh Tariq, Yasir Hussain, Nadeem Ahmed Sheikh, Kamran Afaq & Hafiz Muhammad Ali. (2020) Regression-Based Empirical Modeling of Thermal Conductivity of CuO-Water Nanofluid using Data-Driven Techniques. International Journal of Thermophysics 41:4.
Crossref
W.X. Hong, N.A.C. Sidik & R. Saidur. (2020) Effect of surfactants on thermal conductivity of graphene based hybrid nanofluid. IOP Conference Series: Earth and Environmental Science 463:1, pages 012122.
Crossref
S. Salman, A.R. Abu Talib, S. Saadon & M.T. Hameed Sultan. (2020) Hybrid nanofluid flow and heat transfer over backward and forward steps: A review. Powder Technology 363, pages 448-472.
Crossref
Hong Wei Xian, Nor Azwadi Che Sidik & R. Saidur. (2020) Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. International Communications in Heat and Mass Transfer 110, pages 104389.
Crossref
Furqan Jamil & Hafiz Muhammad Ali. 2020. Hybrid Nanofluids for Convection Heat Transfer. Hybrid Nanofluids for Convection Heat Transfer 215 254 .
Hatice Mercan. 2020. Hybrid Nanofluids for Convection Heat Transfer. Hybrid Nanofluids for Convection Heat Transfer 101 142 .
Leye M. Amoo & R. Layi Fagbenle. 2020. Applications of Heat, Mass and Fluid Boundary Layers. Applications of Heat, Mass and Fluid Boundary Layers 281 382 .
O. K. Koriko, K. S. Adegbie, I. L. Animasaun & A. F. Ijirimoye. (2019) Comparative Analysis Between Three-Dimensional Flow of Water Conveying Alumina Nanoparticles and Water Conveying Alumina–Iron(III) Oxide Nanoparticles in the Presence of Lorentz Force. Arabian Journal for Science and Engineering 45:1, pages 455-464.
Crossref
Vivek Kumar & Jahar Sarkar. (2019) Research and development on composite nanofluids as next-generation heat transfer medium. Journal of Thermal Analysis and Calorimetry 137:4, pages 1133-1154.
Crossref
Hamza Babar & Hafiz Muhammad Ali. (2019) Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. Journal of Molecular Liquids 281, pages 598-633.
Crossref
Marjan Goodarzi, Davood Toghraie, Mahdi Reiszadeh & Masoud Afrand. (2018) Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration. Journal of Thermal Analysis and Calorimetry 136:2, pages 513-525.
Crossref
Z. Aparna, Monisha Michael, S.K. Pabi & S. Ghosh. (2019) Thermal conductivity of aqueous Al2O3/Ag hybrid nanofluid at different temperatures and volume concentrations: An experimental investigation and development of new correlation function. Powder Technology 343, pages 714-722.
Crossref
Gabriela Huminic & Angel Huminic. (2019) The influence of hybrid nanofluids on the performances of elliptical tube: Recent research and numerical study. International Journal of Heat and Mass Transfer 129, pages 132-143.
Crossref
De-Yi Shang & Liang-Cai ZhongDe-Yi Shang & Liang-Cai Zhong. 2019. Heat Transfer Due to Laminar Natural Convection of Nanofluids. Heat Transfer Due to Laminar Natural Convection of Nanofluids 1 18 .
Manzoore Elahi M. Soudagar, Nik-Nazri Nik-Ghazali, Md. Abul Kalam, I.A. Badruddin, N.R. Banapurmath & Naveed Akram. (2018) The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Conversion and Management 178, pages 146-177.
Crossref
Muhammad Usman Sajid & Hafiz Muhammad Ali. (2018) Thermal conductivity of hybrid nanofluids: A critical review. International Journal of Heat and Mass Transfer 126, pages 211-234.
Crossref
Sumit Kr. Singh & Jahar Sarkar. (2018) Energy, exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant. International Communications in Heat and Mass Transfer 98, pages 41-48.
Crossref
Mohammad Hemmat Esfe, Mahmoud Kiannejad Amiri & Ali Alirezaie. (2018) Thermal conductivity of a hybrid nanofluid. Journal of Thermal Analysis and Calorimetry 134:2, pages 1113-1122.
Crossref
Tae Jong Choi, Bimal Subedi, Hyun Jun Ham, Myeong Soo Park & Seok Pil Jang. (2018) A review of the internal forced convective heat transfer characteristics of nanofluids: Experimental features, mechanisms and thermal performance criteria. Journal of Mechanical Science and Technology 32:8, pages 3491-3505.
Crossref
Munish Gupta, Vinay Singh, Satish Kumar, Sandeep Kumar, Neeraj Dilbaghi & Zafar Said. (2018) Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. Journal of Cleaner Production 190, pages 169-192.
Crossref
Alina Adriana Minea & Wael M. El-Maghlany. (2018) Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison. Renewable Energy 120, pages 350-364.
Crossref
M. Zubair Akbar Qureshi & Muhammad Ashraf. (2018) Computational analysis of nanofluids: A review. The European Physical Journal Plus 133:2.
Crossref
TVR Sekhar, Gopal Nandan, Ravi Prakash & Marisamy Muthuraman. (2018) Investigations on Viscosity and Thermal Conductivity of Cobalt oxide- water Nano fluid. Materials Today: Proceedings 5:2, pages 6176-6182.
Crossref
Liu Yang & Yuhan Hu. (2017) Toward TiO2 Nanofluids—Part 1: Preparation and Properties. Nanoscale Research Letters 12:1.
Crossref
Nor Azwadi Che Sidik, Muhammad Mahmud Jamil, Wan Mohd Arif Aziz Japar & Isa Muhammad Adamu. (2017) A review on preparation methods, stability and applications of hybrid nanofluids. Renewable and Sustainable Energy Reviews 80, pages 1112-1122.
Crossref
Muhammad Noor Afiq Witri Muhammad Yazid, Nor Azwadi Che Sidik & Wira Jazair Yahya. (2017) Heat and mass transfer characteristics of carbon nanotube nanofluids: A review. Renewable and Sustainable Energy Reviews 80, pages 914-941.
Crossref
Letícia Raquel Oliveira, Anielle Christine Almeida Silva, Noelio Oliveira Dantas & Enio P. Bandarra Filho. (2017) Thermophysical properties of TiO2-PVA/water nanofluids. International Journal of Heat and Mass Transfer 115, pages 795-808.
Crossref
Muhammad Hafiz Hamzah, Nor Azwadi Che Sidik, Tan Lit Ken, Rizalman Mamat & G. Najafi. (2017) Factors affecting the performance of hybrid nanofluids: A comprehensive review. International Journal of Heat and Mass Transfer 115, pages 630-646.
Crossref
Suleiman Akilu, Aklilu Tesfamichael Baheta & K.V. Sharma. (2017) Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. Journal of Molecular Liquids 246, pages 396-405.
Crossref
K A Hamid, W H Azmi, M F Nabil & R Mamat. (2017) Improved thermal conductivity of TiO 2 –SiO 2 hybrid nanofluid in ethylene glycol and water mixture . IOP Conference Series: Materials Science and Engineering 257, pages 012067.
Crossref
Yonrapach Areerob, Dinh Cung Tien Nguyen, Biswas Md Rokon Dowla, Asghar Ali & and Won-Chun Oh. (2017) Aluminum Effect as Additive Material in Expanded Graphite/Sand Composite for High Thermal Conductivity. Korean Journal of Materials Research 27:8, pages 422-430.
Crossref
K.Y. Leong, K.Z. Ku Ahmad, Hwai Chyuan Ong, M.J. Ghazali & Azizah Baharum. (2017) Synthesis and thermal conductivity characteristic of hybrid nanofluids – A review. Renewable and Sustainable Energy Reviews 75, pages 868-878.
Crossref
Pritam Kumar Das. (2017) A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. Journal of Molecular Liquids 240, pages 420-446.
Crossref
Nor Azwadi Che Sidik, Muhammad Noor Afiq Witri Muhammad Yazid & Syahrullail Samion. (2017) A review on the use of carbon nanotubes nanofluid for energy harvesting system. International Journal of Heat and Mass Transfer 111, pages 782-794.
Crossref
Munish Gupta, Vinay Singh, Rajesh Kumar & Z. Said. (2017) A review on thermophysical properties of nanofluids and heat transfer applications. Renewable and Sustainable Energy Reviews 74, pages 638-670.
Crossref
Mohammad Hemmat Esfe, Mousa Rejvani, Rostam Karimpour & Ali Akbar Abbasian Arani. (2017) Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. Journal of Thermal Analysis and Calorimetry 128:3, pages 1359-1371.
Crossref
Liu Yang & Kai Du. (2017) A comprehensive review on heat transfer characteristics of TiO2 nanofluids. International Journal of Heat and Mass Transfer 108, pages 11-31.
Crossref
Mohd Rosdzimin Abdul Rahman, Kin Yuen Leong, Azam Che Idris, Mohd Rashdan Saad & Mahmood Anwar. (2016) Numerical analysis of the forced convective heat transfer on Al2O3–Cu/water hybrid nanofluid. Heat and Mass Transfer 53:5, pages 1835-1842.
Crossref
Nor Azwadi Che Sidik, Isa Muhammad Adamu, Muhammad Mahmud Jamil, G.H.R. Kefayati, Rizalman Mamat & G. Najafi. (2016) Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. International Communications in Heat and Mass Transfer 78, pages 68-79.
Crossref
K. Kalidasan & P. Rajesh Kanna. (2016) Effective utilization of MWCNT–water nanofluid for the enhancement of laminar natural convection inside the open square enclosure. Journal of the Taiwan Institute of Chemical Engineers 65, pages 331-340.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.