83
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of Ideal Crystal Superheating and Decay

Pages 397-406 | Received 01 May 2003, Accepted 01 Jan 2004, Published online: 21 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

A. Y. Kuksin, I. V. Morozov, G. E. Norman, V. V. Stegailov & I. A. Valuev. (2005) Standards for molecular dynamics modelling and simulation of relaxation. Molecular Simulation 31:14-15, pages 1005-1017.
Read now

Articles from other publishers (36)

Azat O. Tipeev, Roman E. Ryltsev, Nikolay M. Chtchelkatchev, Shiddhartha Ramprakash & Edgar D. Zanotto. (2023) Machine learning-assisted MD simulation of melting in superheated AlCu validates the Classical Nucleation Theory. Journal of Molecular Liquids 387, pages 122606.
Crossref
Xue Fan, Xiaohong Chen, Deng Pan, Yi Liu, Ping Liu & Mo Li. (2021) Localization and delocationzation of surface disordering in surface mediated melting. Physical Review B 104:13.
Crossref
V S Krasnikov & A E Mayer. (2016) Melting of aluminum with ideal or defect lattice: Molecular dynamics simulations with accounting of electronic heat conductivity. Journal of Physics: Conference Series 774, pages 012016.
Crossref
V. I. Kosyakov, V. A. Shestakov, A. B. Kaplun & A. B. Meshalkin. (2016) Metastable Equilibria with the Participation of Superheated Crystal Phases in Binary Oxide Systems. Russian Journal of Physical Chemistry A 90:4, pages 718-722.
Crossref
V.S. Krasnikov & A.E. Mayer. (2015) Plasticity driven growth of nanovoids and strength of aluminum at high rate tension: Molecular dynamics simulations and continuum modeling. International Journal of Plasticity 74, pages 75-91.
Crossref
I. A. Bryukhanov, V. L. Kovalev & A. V. Larin. (2015) Nucleation of dislocations in aluminum alloys with copper. Physics of the Solid State 57:9, pages 1807-1817.
Crossref
V. V. Pisarev. (2014) Nonclassical nucleation kinetics in the crystallization of a supercooled melt. Russian Journal of Physical Chemistry A 88:8, pages 1382-1387.
Crossref
G V Ionov, V V Dremov, A V Karavaev, S P Protsenko, V G Baidakov & A O Tipeev. (2014) Evaluation of metastable region boundaries for liquid and solid states in MD simulations. Journal of Physics: Conference Series 500:17, pages 172004.
Crossref
G. E. Norman & V. V. Pisarev. (2012) Molecular dynamics analysis of the crystallization of an overcooled aluminum melt. Russian Journal of Physical Chemistry A 86:9, pages 1447-1452.
Crossref
Grigory S. Smirnov & Vladimir V. Stegailov. (2012) Melting and superheating of sI methane hydrate: Molecular dynamics study. The Journal of Chemical Physics 136:4.
Crossref
G. E. Norman & A. V. Yanilkin. (2011) Homogeneous nucleation of dislocations. Physics of the Solid State 53:8, pages 1614-1619.
Crossref
Majid Masnavi, Mitsuo Nakajima, Kazuhiko Horioka, Homaira Parchamy Araghy & Akira Endo. (2011) Simulation of particle velocity in a laser-produced tin plasma extreme ultraviolet source. Journal of Applied Physics 109:12.
Crossref
A. Yu. Kuksin, G. E. Norman, V. V. Pisarev, V. V. Stegailov & A. V. Yanilkin. (2010) Theory and molecular dynamics modeling of spall fracture in liquids. Physical Review B 82:17.
Crossref
M. M. Conde & C. Vega. (2010) Determining the three-phase coexistence line in methane hydrates using computer simulations. The Journal of Chemical Physics 133:6, pages 064507.
Crossref
D. K. Belashchenko, D. E. Smirnova & O. I. Ostrovski. (2010) Molecular-dynamic simulation of the thermophysical properties of liquid uranium. High Temperature 48:3, pages 363-375.
Crossref
G. I. Kanel. (2010) Spall fracture: methodological aspects, mechanisms and governing factors. International Journal of Fracture 163:1-2, pages 173-191.
Crossref
Alexey Kuksin, Genri Norman, Vladimir Stegailov, Alexey Yanilkin & Petr Zhilyaev. (2009) Dynamic fracture kinetics, influence of temperature and microstructure in the atomistic model of aluminum. International Journal of Fracture 162:1-2, pages 127-136.
Crossref
G. I. Kanel. 2010. IUTAM Symposium on Dynamic Fracture and Fragmentation. IUTAM Symposium on Dynamic Fracture and Fragmentation 427 445 .
A. Yu. Kuksin, G. E. Norman, V. V. Stegailov & A. V. Yanilkin. (2009) Molecular simulation as a scientific base of nanotechnologies in power engineering. Journal of Engineering Thermophysics 18:3, pages 197-226.
Crossref
D. K. Belashchenko. (2009) Application of the embedded atom model to liquid metals: Liquid sodium. High Temperature 47:4, pages 494-507.
Crossref
D. K. Belashchenko & O. I. Ostrovskii. (2009) Application of the embedded atom model to liquid metals: Liquid lithium. High Temperature 47:2, pages 211-218.
Crossref
D. K. Belashchenko. (2009) The use of the embedded atom model for liquid metals: Liquid potassium. Russian Journal of Physical Chemistry A 83:2, pages 260-264.
Crossref
Alexey Kuksin, Genri Norman, Vladimir Stegailov, Alexey Yanilkin & Petr Zhilyaev. 2010. IUTAM Symposium on Dynamic Fracture and Fragmentation. IUTAM Symposium on Dynamic Fracture and Fragmentation 127 136 .
D. K. Belashchenko & Yu. V. Zhuravlev. (2008) Application of the embedded-atom method to liquid copper. Inorganic Materials 44:9, pages 939-945.
Crossref
M. M. Conde, C. Vega & A. Patrykiejew. (2008) The thickness of a liquid layer on the free surface of ice as obtained from computer simulation. The Journal of Chemical Physics 129:1.
Crossref
D. K. Belashchenko. (2008) The embedded atom model of molten lead. Russian Journal of Physical Chemistry A 82:7, pages 1138-1144.
Crossref
C Vega, E Sanz, J L F Abascal & E G Noya. (2008) Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins. Journal of Physics: Condensed Matter 20:15, pages 153101.
Crossref
T T Bazhirov, G E Norman & V V Stegailov. (2008) Cavitation in liquid metals under negative pressures. Molecular dynamics modeling and simulation. Journal of Physics: Condensed Matter 20:11, pages 114113.
Crossref
D. K. Belashchenko & O. I. Ostrovskii. (2014) A Molecular Dynamics Study of Nickel Crystallization at Strong Supercoolings. Russian Journal of Physical Chemistry 82:3, pages 364-375.
Crossref
A. Yu. Kuksin & A. V. Yanilkin. (2007) Kinetic model of fracture at high strain rates in the example of crystalline aluminum. Doklady Physics 52:4, pages 186-190.
Crossref
A. Yu. Kuksin, G. E. Norman & V. V. Stegailov. (2007) The phase diagram and spinodal decomposition of metastable states of Lennard-Jones system. High Temperature 45:1, pages 37-48.
Crossref
D. K. Belashchenko. (2006) Molecular dynamics simulation of the homogeneous crystallization of liquid rubidium. Russian Journal of Physical Chemistry 80:12, pages 1968-1979.
Crossref
T. T. Bazhirov, G. E. Norman & V. V. Stegailov. (2006) Molecular dynamics simulation of cavitation in a lead melt at negative pressures. Russian Journal of Physical Chemistry 80:S1, pages S90-S97.
Crossref
T. T. Bazhirov, G. É. Norman & V. V. Stegailov. (2005) Cavitation and the stability region of liquid lead at negative pressures: Molecular dynamics study. Doklady Physics 50:11, pages 570-576.
Crossref
Vladimir Stegailov. (2005) Homogeneous and heterogeneous mechanisms of superheated solid melting and decay. Computer Physics Communications 169:1-3, pages 247-250.
Crossref
Carl McBride, Carlos Vega, Eduardo Sanz & Jose L. F. Abascal. (2004) Formation of high density amorphous ice by decompression of ice VII and ice VIII at 135 K. The Journal of Chemical Physics 121:23, pages 11907-11911.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.