149
Views
112
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Dynamics Simulations with Interaction Potentials Including Polarization Development of a Noniterative Method and Application to Water

&
Pages 181-192 | Received 01 Sep 1989, Accepted 01 Nov 1989, Published online: 23 Sep 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (11)

Ioannis N. Tsimpanogiannis, Othonas A. Moultos, Luís F. M. Franco, Marcelle B. de M. Spera, Máté Erdős & Ioannis G. Economou. (2019) Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. Molecular Simulation 45:4-5, pages 425-453.
Read now
Victor H. Rusu, Stephan Bachmann & Wilfred F. van Gunsteren. (2016) GROMOS polarisable model for acetone. Molecular Physics 114:6, pages 845-854.
Read now
Zhixiong Lin, Nathan Schmid & Wilfred F. van Gunsteren. (2011) The effect of using a polarizable solvent model upon the folding equilibrium of different β-peptides. Molecular Physics 109:4, pages 493-506.
Read now
Anna-Pitschna E. Kunz, Andreas P. Eichenberger & Wilfred F. van Gunsteren. (2011) A simple, efficient polarizable molecular model for liquid carbon tetrachloride. Molecular Physics 109:3, pages 365-372.
Read now
Zhixiong Lin, Anna-Pitschna Kunz & Wilfred F. van Gunsteren. (2010) A one-site polarizable model for liquid chloroform: COS/C. Molecular Physics 108:13, pages 1749-1757.
Read now
Francisco Torrens. (2000) Polarization Force Fields for Peptides Implemented in ECEPP2 and MM2. Molecular Simulation 24:4-6, pages 391-410.
Read now
TOMÁŠ BOUBLÍK & JOCHEN WINKELMANN. (1999) Perturbation theory for fluids of non-spherical polarizable dipolar molecules. Molecular Physics 96:3, pages 435-441.
Read now
CHRISTIAN KRIEBEL JOCHEN WINKELMANN. (1998) Simulation studies on mixtures of polarizable dipolar and polarizable non-polar linear molecules. Molecular Physics 93:2, pages 347-353.
Read now
P. Jedlovszky & G. Pálinkás. (1995) Monte Carlo simulation of liquid acetone with a polarizable molecular model. Molecular Physics 84:2, pages 217-233.
Read now

Articles from other publishers (101)

Yeyue Xiong, Saeed Izadi & Alexey V. Onufriev. (2022) Fast Polarizable Water Model for Atomistic Simulations. Journal of Chemical Theory and Computation 18:10, pages 6324-6333.
Crossref
Yerko Escalona, Nicolas Espinoza, Mateo Barria-Urenda, Chris Oostenbrink & Jose Antonio Garate. (2022) On the effects of induced polarizability at the water–graphene interface via classical charge-on-spring models . Physical Chemistry Chemical Physics 24:13, pages 7748-7758.
Crossref
Mike Devereux, Marco Pezzella, Shampa Raghunathan & Markus Meuwly. (2020) Polarizable Multipolar Molecular Dynamics Using Distributed Point Charges. Journal of Chemical Theory and Computation 16:12, pages 7267-7280.
Crossref
Chetan Rupakheti, Guillaume Lamoureux, Alexander D. MacKerellJr.Jr. & Benoît Roux. (2020) Statistical mechanics of polarizable force fields based on classical Drude oscillators with dynamical propagation by the dual-thermostat extended Lagrangian. The Journal of Chemical Physics 153:11.
Crossref
VS Sandeep Inakollu, Daan P Geerke, Christopher N Rowley & Haibo Yu. (2020) Polarisable force fields: what do they add in biomolecular simulations?. Current Opinion in Structural Biology 61, pages 182-190.
Crossref
Chong-Li Zhao, Dong-Xia Zhao, Qian-Ying Jiang, Hai-Xia Zhang, Shenmin Li & Zhong-Zhi Yang. (2020) Polarizable TIP7P Water Model with Perturbation Charges Evaluated from ABEEM. The Journal of Physical Chemistry B 124:12, pages 2450-2464.
Crossref
Koen M. Visscher & Daan P. Geerke. (2020) Deriving a Polarizable Force Field for Biomolecular Building Blocks with Minimal Empirical Calibration. The Journal of Physical Chemistry B.
Crossref
Seung Soo Kim & Young Min Rhee. (2019) Modeling Charge Flux by Interpolating Atomic Partial Charges. Journal of Chemical Information and Modeling 59:6, pages 2837-2849.
Crossref
Christian Waibel & Joachim Gross. (2019) Polarizable Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: Ethers, n -Alkanes, and Nitrogen . Journal of Chemical Theory and Computation 15:4, pages 2561-2573.
Crossref
Hao Wang & Weitao Yang. (2018) Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network. Journal of Chemical Theory and Computation 15:2, pages 1409-1417.
Crossref
Koen Visscher, William Swope & Daan Geerke. (2018) A QM/MM Derived Polarizable Water Model for Molecular Simulation. Molecules 23:12, pages 3131.
Crossref
Alessio D. Lavino, Luca Banetta, Paola Carbone & Daniele L. Marchisio. (2018) Extended Charge-On-Particle Optimized Potentials for Liquid Simulation Acetone Model: The Case of Acetone–Water Mixtures. The Journal of Physical Chemistry B 122:20, pages 5234-5241.
Crossref
Akihiro MoritaAkihiro Morita. 2018. Theory of Sum Frequency Generation Spectroscopy. Theory of Sum Frequency Generation Spectroscopy 105 122 .
Huiying Chu, Yuebin Zhang, Yan Li & Guohui Li. 2018. Membrane Biophysics. Membrane Biophysics 355 392 .
M. M. Conde, M. Rovere & P. Gallo. (2017) High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique. The Journal of Chemical Physics 147:24.
Crossref
Huiying Chu, Liaoran Cao, Xiangda Peng & Guohui Li. (2017) Polarizable force field development for lipids and their efficient applications in membrane proteins. WIREs Computational Molecular Science 7:5.
Crossref
Tatsuya IshiyamaAkihiro Morita. (2017) Computational Analysis of Vibrational Sum Frequency Generation Spectroscopy. Annual Review of Physical Chemistry 68:1, pages 355-377.
Crossref
Koen M. Visscher, C. Ruben Vosmeer, Rosa A. Luirink & Daan P. Geerke. (2017) A systematic approach to calibrate a transferable polarizable force field parameter set for primary alcohols. Journal of Computational Chemistry 38:8, pages 508-517.
Crossref
Jing Huang, Ye Mei, Gerhard König, Andrew C. Simmonett, Frank C. PickardIVIV, Qin Wu, Lee-Ping Wang, Alexander D. MacKerellJr.Jr., Bernard R. Brooks & Yihan Shao. (2017) An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches. Journal of Chemical Theory and Computation 13:2, pages 679-695.
Crossref
Massimo Mella & E. Curotto. (2016) Quest for Inexpensive Hydrogen Isotopic Fractionation: Do We Need 2D Quantum Confining in Porous Materials or Are Rough Surfaces Enough? The Case of Ammonia Nanoclusters. The Journal of Physical Chemistry A 120:41, pages 8148-8159.
Crossref
Amanda Li, Alexey Voronin, Andrew T. Fenley & Michael K. Gilson. (2016) Evaluation of Representations and Response Models for Polarizable Force Fields. The Journal of Physical Chemistry B 120:33, pages 8668-8684.
Crossref
Steven W. Rick. (2016) A polarizable, charge transfer model of water using the drude oscillator. Journal of Computational Chemistry 37:22, pages 2060-2066.
Crossref
Hao Wang & Weitao Yang. (2016) Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory. The Journal of Chemical Physics 144:22.
Crossref
Justin A. Lemkul, Jing Huang, Benoît Roux & Alexander D. MacKerellJr.Jr.. (2016) An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications. Chemical Reviews 116:9, pages 4983-5013.
Crossref
Elizabeth A. Ploetz, Ariën S. Rustenburg, Daan P. Geerke & Paul E. Smith. (2016) To Polarize or Not to Polarize? Charge-on-Spring versus KBFF Models for Water and Methanol Bulk and Vapor–Liquid Interfacial Mixtures. Journal of Chemical Theory and Computation 12:5, pages 2373-2387.
Crossref
Lin Shen & Weitao Yang. (2016) Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations. Journal of Chemical Theory and Computation 12:4, pages 2017-2027.
Crossref
Oleksandr Loboda, Francesca Ingrosso, Manuel F. Ruiz-López, Krzysztof Szalewicz & Claude Millot. (2016) Geometry-dependent distributed polarizability models for the water molecule. The Journal of Chemical Physics 144:3.
Crossref
Oliwia M. Szklarczyk, Eirini Arvaniti & Wilfred F. van Gunsteren. (2015) Polarizable coarse-grained models for molecular dynamics simulation of liquid cyclohexane. Journal of Computational Chemistry 36:17, pages 1311-1321.
Crossref
Ye Mei, Andrew C. Simmonett, Frank C. PickardIVIV, Robert A. DiStasioJr.Jr., Bernard R. Brooks & Yihan Shao. (2015) Numerical Study on the Partitioning of the Molecular Polarizability into Fluctuating Charge and Induced Atomic Dipole Contributions. The Journal of Physical Chemistry A 119:22, pages 5865-5882.
Crossref
Jérémie Mortier, Christin Rakers, Marcel Bermudez, Manuela S. Murgueitio, Sereina Riniker & Gerhard Wolber. (2015) The impact of molecular dynamics on drug design: applications for the characterization of ligand–macromolecule complexes. Drug Discovery Today 20:6, pages 686-702.
Crossref
Ariel A. Chialvo, Filip Moucka, Lukas Vlcek & Ivo Nezbeda. (2015) Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization. The Journal of Physical Chemistry B 119:15, pages 5010-5019.
Crossref
Zhixiong Lin, Stephan J. Bachmann & Wilfred F. van Gunsteren. (2015) GROMOS polarizable charge-on-spring models for liquid urea: COS/U and COS/U2. The Journal of Chemical Physics 142:9.
Crossref
Stephan J. Bachmann & Wilfred F. van Gunsteren. (2014) An improved simple polarisable water model for use in biomolecular simulation. The Journal of Chemical Physics 141:22.
Crossref
Péter T. Kiss, Marcello Sega & András Baranyai. (2014) Efficient Handling of Gaussian Charge Distributions: An Application to Polarizable Molecular Models. Journal of Chemical Theory and Computation 10:12, pages 5513-5519.
Crossref
Ariel A. Chialvo & Lukas Vlcek. (2014) Ewald Summation Approach to Potential Models of Aqueous Electrolytes Involving Gaussian Charges and Induced Dipoles: Formal and Simulation Results. The Journal of Physical Chemistry B 118:47, pages 13658-13670.
Crossref
Stephan J. Bachmann & Wilfred F. van Gunsteren. (2014) Polarizable Model for DMSO and DMSO–Water Mixtures. The Journal of Physical Chemistry B 118:34, pages 10175-10186.
Crossref
Péter T. Kiss & András Baranyai. (2014) Anomalous properties of water predicted by the BK3 model. The Journal of Chemical Physics 140:15.
Crossref
Oliwia M. Szklarczyk, Stephan J. Bachmann & Wilfred F. van Gunsteren. (2014) A polarizable empirical force field for molecular dynamics simulation of liquid hydrocarbons. Journal of Computational Chemistry 35:10, pages 789-801.
Crossref
Eliot Boulanger & Walter Thiel. (2014) Toward QM/MM Simulation of Enzymatic Reactions with the Drude Oscillator Polarizable Force Field. Journal of Chemical Theory and Computation 10:4, pages 1795-1809.
Crossref
Philipp Tröster, Konstantin Lorenzen & Paul Tavan. (2014) Polarizable Six-Point Water Models from Computational and Empirical Optimization. The Journal of Physical Chemistry B 118:6, pages 1589-1602.
Crossref
Oleg Khoruzhii, Oleg Butin, Alexey Illarionov, Igor Leontyev, Mikhail Olevanov, Vladimir Ozrin, Leonid Pereyaslavets & Boris Fain. 2014. Protein Modelling. Protein Modelling 91 134 .
Aldi Asmadi, Tom Kirchner, Wael Abdallah, Maxim V. Fedorov & Mikhail R. Stukan. (2013) Influence of the Drude charge value on the performance of polarisable water model: A test for microscopic and macroscopic parameters. Journal of Molecular Liquids 188, pages 245-251.
Crossref
Massimo Mella & E. Curotto. (2013) Quantum simulations of the hydrogen molecule on ammonia clusters. The Journal of Chemical Physics 139:12.
Crossref
Lee-Ping Wang, Teresa Head-Gordon, Jay W. Ponder, Pengyu Ren, John D. Chodera, Peter K. Eastman, Todd J. Martinez & Vijay S. Pande. (2013) Systematic Improvement of a Classical Molecular Model of Water. The Journal of Physical Chemistry B 117:34, pages 9956-9972.
Crossref
Philipp Tröster, Konstantin Lorenzen, Magnus Schwörer & Paul Tavan. (2013) Polarizable Water Models from Mixed Computational and Empirical Optimization. The Journal of Physical Chemistry B 117:32, pages 9486-9500.
Crossref
Péter T. Kiss & András Baranyai. (2013) A systematic development of a polarizable potential of water. The Journal of Chemical Physics 138:20.
Crossref
Péter T. Kiss, Péter Bertsyk & András Baranyai. (2012) Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties. The Journal of Chemical Physics 137:19.
Crossref
Eliot Boulanger & Walter Thiel. (2012) Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model. Journal of Chemical Theory and Computation 8:11, pages 4527-4538.
Crossref
C. Ruben Vosmeer, Ariën S. Rustenburg, Julia E. Rice, Hans W. Horn, William C. Swope & Daan P. Geerke. (2012) QM/MM-Based Fitting of Atomic Polarizabilities for Use in Condensed-Phase Biomolecular Simulation. Journal of Chemical Theory and Computation 8:10, pages 3839-3853.
Crossref
Péter T. Kiss & András Baranyai. (2012) Density maximum and polarizable models of water. The Journal of Chemical Physics 137:8.
Crossref
Péter T. Kiss & András Baranyai. (2012) On the pressure calculation for polarizable models in computer simulation. The Journal of Chemical Physics 136:10.
Crossref
Anna-Pitschna E. Kunz, Jane R. Allison, Daan P. Geerke, Bruno A. C. Horta, Philippe H. Hünenberger, Sereina Riniker, Nathan Schmid & Wilfred F. van Gunsteren. (2012) New functionalities in the GROMOS biomolecular simulation software. Journal of Computational Chemistry 33:3, pages 340-353.
Crossref
Thomas C. Schmidt, Alexander Paasche, Christoph Grebner, Kay Ansorg, Johannes Becker, Wook Lee & Bernd Engels. 2014. Electronic Effects in Organic Chemistry. Electronic Effects in Organic Chemistry 25 101 .
Maria M. Reif & Philippe H. Hünenberger. (2011) Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. The Journal of Chemical Physics 134:14.
Crossref
Titus A. Beu. (2010) Molecular dynamics simulations of ion transport through carbon nanotubes. I. Influence of geometry, ion specificity, and many-body interactions. The Journal of Chemical Physics 132:16.
Crossref
Hiroshi Nakano, Takeshi Yamamoto & Shigeki Kato. (2010) A wave-function based approach for polarizable charge model: Systematic comparison of polarization effects on protic, aprotic, and ionic liquids. The Journal of Chemical Physics 132:4.
Crossref
Anna-Pitschna E. Kunz & Wilfred F. van Gunsteren. (2009) Development of a Nonlinear Classical Polarization Model for Liquid Water and Aqueous Solutions: COS/D. The Journal of Physical Chemistry A 113:43, pages 11570-11579.
Crossref
András Baranyai. (2009) A computationally less demanding charge-on-spring model for the water molecule. The Journal of Chemical Physics 131:11.
Crossref
Pär Söderhjelm, Francesco Aquilante & Ulf Ryde. (2009) Calculation of Protein−Ligand Interaction Energies by a Fragmentation Approach Combining High-Level Quantum Chemistry with Classical Many-Body Effects. The Journal of Physical Chemistry B 113:32, pages 11085-11094.
Crossref
Anas M. Ababneh. (2009) The role of polarization interactions in the wrapping/unwrapping of nucleosomal DNA around the histone octamer: Implications to gene regulation. Journal of Theoretical Biology 258:2, pages 229-239.
Crossref
Hao Hu & Weitao Yang. (2009) Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes. Journal of Molecular Structure: THEOCHEM 898:1-3, pages 17-30.
Crossref
Hans Martin Senn & Walter Thiel. (2009) QM/MM Methods for Biomolecular Systems. Angewandte Chemie International Edition 48:7, pages 1198-1229.
Crossref
Hans Martin Senn & Walter Thiel. (2009) QM/MM-Methoden für biomolekulare Systeme. Angewandte Chemie 121:7, pages 1220-1254.
Crossref
Zhenyu Lu & Yingkai Zhang. (2008) Interfacing ab Initio Quantum Mechanical Method with Classical Drude Osillator Polarizable Model for Molecular Dynamics Simulation of Chemical Reactions. Journal of Chemical Theory and Computation 4:8, pages 1237-1248.
Crossref
Daan P. Geerke, Stephan Thiel, Walter Thiel & Wilfred F. van Gunsteren. (2008) QM–MM interactions in simulations of liquid water using combined semi-empirical/classical Hamiltonians. Phys. Chem. Chem. Phys. 10:2, pages 297-302.
Crossref
Daan P. Geerke & Wilfred F. van Gunsteren. (2007) On the Calculation of Atomic Forces in Classical Simulation Using the Charge-on-Spring Method To Explicitly Treat Electronic Polarization. Journal of Chemical Theory and Computation 3:6, pages 2128-2137.
Crossref
Aleksandr V. Marenich, Ryan M. Olson, Adam C. Chamberlin, Christopher J. Cramer & Donald G. Truhlar. (2007) Polarization Effects in Aqueous and Nonaqueous Solutions. Journal of Chemical Theory and Computation 3:6, pages 2055-2067.
Crossref
Daan P. Geerke, Stephan Thiel, Walter Thiel & Wilfred F. van Gunsteren. (2007) Combined QM/MM Molecular Dynamics Study on a Condensed-Phase S N 2 Reaction at Nitrogen:  The Effect of Explicitly Including Solvent Polarization . Journal of Chemical Theory and Computation 3:4, pages 1499-1509.
Crossref
Daan P. Geerke & Wilfred F. van Gunsteren. (2007) Calculation of the Free Energy of Polarization:  Quantifying the Effect of Explicitly Treating Electronic Polarization on the Transferability of Force-Field Parameters. The Journal of Physical Chemistry B 111:23, pages 6425-6436.
Crossref
P. E. Mason & J. W. Brady. (2007) “Tetrahedrality” and the Relationship between Collective Structure and Radial Distribution Functions in Liquid Water. The Journal of Physical Chemistry B 111:20, pages 5669-5679.
Crossref
Haibo Yu, Daan P. Geerke, Haiyan Liu & Wilfred F. van Gunsteren. (2006) Molecular dynamics simulations of liquid methanol and methanol–water mixtures with polarizable models. Journal of Computational Chemistry 27:13, pages 1494-1504.
Crossref
Christopher J. R. Illingworth, Stuart R. Gooding, Peter J. Winn, Garth A. Jones, György G. Ferenczy & Christopher A. Reynolds. (2006) Classical Polarization in Hybrid QM/MM Methods. The Journal of Physical Chemistry A 110:20, pages 6487-6497.
Crossref
Markus Christen, Philippe H. Hünenberger, Dirk Bakowies, Riccardo Baron, Roland Bürgi, Daan P. Geerke, Tim N. Heinz, Mika A. Kastenholz, Vincent Kräutler, Chris Oostenbrink, Christine Peter, Daniel Trzesniak & Wilfred F. van Gunsteren. (2005) The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry 26:16, pages 1719-1751.
Crossref
Sandip Paul & Amalendu Chandra. (2005) Liquid-vapor interfacial properties of water-ammonia mixtures: Dependence on ammonia concentration. The Journal of Chemical Physics 123:17.
Crossref
Sandip Paul & Amalendu Chandra. (2005) Molecular Dynamics Study of the Liquid−Vapor Interface of Acetonitrile:  Equilibrium and Dynamical Properties. The Journal of Physical Chemistry B 109:43, pages 20558-20564.
Crossref
Sandip Paul & Amalendu Chandra. (2005) Hydrogen Bond Properties and Dynamics of Liquid−Vapor Interfaces of Aqueous Methanol Solutions. Journal of Chemical Theory and Computation 1:6, pages 1221-1231.
Crossref
Haibo Yu & Wilfred F. van Gunsteren. (2005) Accounting for polarization in molecular simulation. Computer Physics Communications 172:2, pages 69-85.
Crossref
Sandip Paul & Amalendu Chandra. (2004) Binding of hydrogen bonding solutes at liquid–vapour interfaces of molecular fluids. Chemical Physics Letters 400:4-6, pages 515-519.
Crossref
Haibo Yu & Wilfred F. van Gunsteren. (2004) Charge-on-spring polarizable water models revisited: From water clusters to liquid water to ice. The Journal of Chemical Physics 121:19, pages 9549-9564.
Crossref
Kim Palmo & Samuel Krimm. (2004) Theoretical basis and accuracy of a non-iterative polarization protocol in molecular mechanics energy function calculations. Chemical Physics Letters 395:1-3, pages 133-137.
Crossref
George A. Kaminski, Richard A. Friesner & Ruhong Zhou. (2003) A computationally inexpensive modification of the point dipole electrostatic polarization model for molecular simulations. Journal of Computational Chemistry 24:3, pages 267-276.
Crossref
Haibo Yu, Tomas Hansson & Wilfred F. van Gunsteren. (2003) Development of a simple, self-consistent polarizable model for liquid water. The Journal of Chemical Physics 118:1, pages 221-234.
Crossref
T. P. Straatsma. 2002. Encyclopedia of Computational Chemistry. Encyclopedia of Computational Chemistry.
György G. Ferenczy & Christopher A. Reynolds. (2001) Modeling Polarization through Induced Atomic Charges. The Journal of Physical Chemistry A 105:51, pages 11470-11479.
Crossref
Michael W. Mahoney & William L. Jorgensen. (2001) Rapid estimation of electronic degrees of freedom in Monte Carlo calculations for polarizable models of liquid water. The Journal of Chemical Physics 114:21, pages 9337-9349.
Crossref
Pál Jedlovszky & Johannes Richardi. (1999) Comparison of different water models from ambient to supercritical conditions: A Monte Carlo simulation and molecular Ornstein–Zernike study. The Journal of Chemical Physics 110:16, pages 8019-8031.
Crossref
Christian Kriebel & Jochen Winkelmann. (1996) Polarizable dipolar two-center Lennard-Jones fluids: Computer simulations and equation of state. The Journal of Chemical Physics 105:20, pages 9316-9323.
Crossref
T. P. Straatsma. 1996. Reviews in Computational Chemistry. Reviews in Computational Chemistry 81 127 .
David A. Pearlman, David A. Case, James W. Caldwell, Wilson S. Ross, Thomas E. CheathamIIIIII, Steve DeBolt, David Ferguson, George Seibel & Peter Kollman. (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications 91:1-3, pages 1-41.
Crossref
B. Oliva, X. Daura, E. Querol, F.X. Avil�s & O. Tapia. (1995) Structure and atomic fluctuation patterns of potato carboxypeptidase a inhibitor protein. European Biophysics Journal 24:1, pages 1-11.
Crossref
Yves Guissani & Bertrand Guillot. (1993) A computer simulation study of the liquid–vapor coexistence curve of water. The Journal of Chemical Physics 98:10, pages 8221-8235.
Crossref
J. Bertran, M. F. Ruiz-L�pez, D. Rinaldi & J. L. Rivail. (1992) Water dimer in liquid water. Theoretica Chimica Acta 84:3, pages 181-194.
Crossref
Christopher J. Cramer & Donald G. Truhlar. (1992) Polarization of the nucleic acid bases in aqueous solution. Chemical Physics Letters 198:1-2, pages 74-80.
Crossref
Hideki Tanaka & Keith E. Gubbins. (1992) Structure and thermodynamic properties of water–methanol mixtures: Role of the water–water interaction. The Journal of Chemical Physics 97:4, pages 2626-2634.
Crossref
U Buontempo, P Postorino, M. A Ricci & A. K Soper. (1992) Neutron Diffraction Study of Water At High Temperature. Europhysics Letters (EPL) 19:5, pages 385-389.
Crossref
Francisco Torrens, Manuel Ruiz-López, Carlos Cativiela, José I. García & José A. Mayoral. (1992) Conformational aspects of some asymmetric Diels-Alder reactions. A molecular mechanics + polarization study. Tetrahedron 48:24, pages 5209-5218.
Crossref
Paul E. Smith & B. Montgomery Pettitt. (1991) Peptides in ionic solutions: A comparison of the Ewald and switching function techniques. The Journal of Chemical Physics 95:11, pages 8430-8441.
Crossref
Michiel Sprik. (1991) Hydrogen bonding and the static dielectric constant in liquid water. The Journal of Chemical Physics 95:9, pages 6762-6769.
Crossref
Omar A. Karim. (1991) Simulation of an anion in water: effect of ion polarizability. Chemical Physics Letters 184:5-6, pages 560-565.
Crossref
T.P. Straatsma & J.A. McCammon. (1991) Free energy evaluation from molecular dynamics simulations using force fields including electronics polarization. Chemical Physics Letters 177:4-5, pages 433-440.
Crossref
T.P. Straatsma & J.A. McCammon. 1991. Molecular Design and Modeling: Concepts and Applications Part A: Proteins, Peptides, and Enzymes. Molecular Design and Modeling: Concepts and Applications Part A: Proteins, Peptides, and Enzymes 497 511 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.