Publication Cover
High Pressure Research
An International Journal
Volume 37, 2017 - Issue 3
193
Views
24
CrossRef citations to date
0
Altmetric
Articles

Constant electrical resistivity of Zn along the melting boundary up to 5 GPa

ORCID Icon & ORCID Icon
Pages 319-333 | Received 10 Apr 2017, Accepted 06 Jun 2017, Published online: 20 Jun 2017

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Saeed Mohammadi, Eslam Ranjbarnodeh, M. Soltanalinejad, Hamed Nikdehghan & Majid Pouranvari. (2023) Microstructural evaluation in dissimilar liquid phase bonding of cast Al–Si alloy and stainless steel using pure zinc filler metal. Science and Technology of Welding and Joining 28:6, pages 455-460.
Read now
Meryem Berrada, Richard A. Secco & Wenjun Yong. (2018) Decreasing electrical resistivity of gold along the melting boundary up to 5 GPa. High Pressure Research 38:4, pages 367-376.
Read now
Joshua A. H. Littleton, Richard A. Secco & Wenjun Yong. (2018) Decreasing electrical resistivity of silver along the melting boundary up to 5 GPa. High Pressure Research 38:2, pages 99-106.
Read now

Articles from other publishers (21)

Innocent C. Ezenwa & Takashi Yoshino. (2023) Investigation of Solid–Solid Transition in Ti and Zr at High Pressure by Electrical Resistivity. physica status solidi (b) 260:7.
Crossref
Meryem Berrada & Richard A. Secco. (2022) Rho: Application to Analyze Electrical Resistivity. Journal of Open Research Software 10.
Crossref
Oluwasanmi A. Orole, Wenjun Yong & Richard A. Secco. (2022) Thermal Convection in Vesta’s Core from Experimentally-Based Conductive Heat Flow Estimates. Crystals 12:12, pages 1752.
Crossref
Joshua A. H. Littleton, Wenjun Yong & Richard A. Secco. (2022) Electrical resistivity of the Fe–Si–S ternary system: implications for timing of thermal convection shutdown in the lunar core. Scientific Reports 12:1.
Crossref
Yuan Yin, Qingwen Zhang, Youjun Zhang, Shuangmeng Zhai & Yun Liu. (2022) Electrical and thermal conductivity of Earth’s core and its thermal evolution—A review. Acta Geochimica 41:4, pages 665-688.
Crossref
Fan Yang, Xiaojun Hu & Yingwei Fei. (2022) In situ measurements of electrical resistivity of metals in a cubic multi-anvil apparatus by van der Pauw method . Review of Scientific Instruments 93:5.
Crossref
E.M. Lenhart & Richard A. Secco. (2022) Implications for the energy source for an early dynamo in Vesta from experiments on electrical resistivity of liquid Fe-10wt%Ni at high pressures. Icarus 378, pages 114962.
Crossref
Ryan S. Crum, David A. Brantley, Vu Tran, Minta C. Akin & Ricky Chau. (2021) Electrical conductivity of Sn at high pressure and temperature. Physical Review B 104:18.
Crossref
Innocent C. Ezenwa & Takashi Yoshino. (2021) Electrical Resistivity of Cu and Au at High Pressure above 5 GPa: Implications for the Constant Electrical Resistivity Theory along the Melting Curve of the Simple Metals. Materials 14:19, pages 5476.
Crossref
Meryem Berrada & Richard A. Secco. (2021) Review of Electrical Resistivity Measurements and Calculations of Fe and Fe-Alloys Relating to Planetary Cores. Frontiers in Earth Science 9.
Crossref
Joshua A. H. Littleton, Richard A. Secco & Wenjun Yong. (2021) Electrical Resistivity of FeS at High Pressures and Temperatures: Implications of Thermal Transport in the Core of Ganymede. Journal of Geophysical Research: Planets 126:5.
Crossref
Innocent C. Ezenwa & Takashi Yoshino. (2021) Martian core heat flux: Electrical resistivity and thermal conductivity of liquid Fe at martian core P-T conditions. Icarus 360, pages 114367.
Crossref
Innocent C. Ezenwa & Takashi Yoshino. (2020) Electrical resistivity of solid and liquid Pt: Insight into electrical resistivity of ε-Fe. Earth and Planetary Science Letters 544, pages 116380.
Crossref
Innocent C. Ezenwa & Takashi Yoshino. (2020) Technique, cell assembly, and measurement of T- dependent electrical resistivity of liquid Fe devoid of contamination at P, T conditions . Review of Scientific Instruments 91:2.
Crossref
Innocent C. Ezenwa & Richard A. Secco. (2019) Fe Melting Transition: Electrical Resistivity, Thermal Conductivity, and Heat Flow at the Inner Core Boundaries of Mercury and Ganymede. Crystals 9:7, pages 359.
Crossref
Reynold E. Silber, Richard A. Secco, Wenjun Yong & Joshua A. H. Littleton. (2019) Heat Flow in Earth's Core From Invariant Electrical Resistivity of Fe‐Si on the Melting Boundary to 9 GPa: Do Light Elements Matter?. Journal of Geophysical Research: Solid Earth 124:6, pages 5521-5543.
Crossref
Yuan Yin, Kuan Zhai, Baohua Zhang & Shuangmeng Zhai. (2019) Electrical Resistivity of Iron Phosphides at High‐Pressure and High‐Temperature Conditions With Implications for Lunar Core's Thermal Conductivity. Journal of Geophysical Research: Solid Earth 124:6, pages 5544-5556.
Crossref
Joshua A. H. Littleton, Richard A. Secco, Wenjun Yong & Meryem Berrada. (2019) Electrical resistivity and thermal conductivity of W and Re up to 5 GPa and 2300 K. Journal of Applied Physics 125:13.
Crossref
Hitoshi Gomi & Takashi Yoshino. (2018) Impurity Resistivity of fcc and hcp Fe-Based Alloys: Thermal Stratification at the Top of the Core of Super-Earths. Frontiers in Earth Science 6.
Crossref
D Errandonea, S G MacLeod, J Ruiz-Fuertes, L Burakovsky, M I McMahon, C W Wilson, J Ibañez, D Daisenberger & C Popescu. (2018) High-pressure/high-temperature phase diagram of zinc. Journal of Physics: Condensed Matter 30:29, pages 295402.
Crossref
Fabian Wagle & Gerd Steinle-Neumann. (2018) Electrical resistivity discontinuity of iron along the melting curve. Geophysical Journal International 213:1, pages 237-243.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.