362
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Evidence for deformation-induced transformations of Cu-rich precipitates in an aged FeCu alloy

, &
Pages 367-374 | Received 18 Apr 2006, Accepted 18 May 2006, Published online: 23 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

D.J. Bacon & Yu.N. Osetsky. (2009) Mechanisms of hardening due to copper precipitates in α-iron. Philosophical Magazine 89:34-36, pages 3333-3349.
Read now

Articles from other publishers (35)

Jiamei Wang, Chengning Li, Xinjie Di & Dongpo Wang. (2022) Effect of Cu Content on Microstructure and Mechanical Properties for High-Strength Deposited Metals Strengthened by Nano-Precipitation. Metals 12:8, pages 1360.
Crossref
M.L. Jenkins & G.D.W. Smith. (2022) Rebuttal of: “Reply to response to “diffraction artefacts from twins and stacking faults, and the mirage of hexagonal, polytypes or other superstructures”” by C. Cayron, Scripta Materialia 203 (2021) 114,115. Scripta Materialia 209, pages 114369.
Crossref
Jiamei Wang, Xinjie Di, Chengning Li & Dongpo Wang. (2022) Characterization of nanoscale precipitates and enhanced mechanical properties of high strength weld metals containing Cu additions after PWHT. Metallurgical Research & Technology 119:1, pages 119.
Crossref
Haojie Kong, Zengbao Jiao, Jian Lu & Chain Tsuan Liu. (2021) Low-carbon advanced nanostructured steels: Microstructure, mechanical properties, and applications新型低碳纳米钢: 微观组织、机械性能与应用. Science China Materials 64:7, pages 1580-1597.
Crossref
Luqing Cui, Shuang Jiang, Jinghao Xu, Ru Lin Peng, Reza Taherzadeh Mousavian & Johan Moverare. (2021) Revealing relationships between microstructure and hardening nature of additively manufactured 316L stainless steel. Materials & Design 198, pages 109385.
Crossref
Sui Wang, Yake Wu, Tengyu Zhang & Feng Jiang. (2020) Copper Precipitation Behavior during Continuous Cooling and Subsequent Aging of Powder-Forged Fe-2.5Cu-C Alloy. Metals 10:10, pages 1350.
Crossref
Mingxue Sun, Yang Xu & Jin Wang. (2020) Effect of Aging Time on Microstructure and Mechanical Properties in a Cu-Bearing Marine Engineering Steel. Materials 13:16, pages 3638.
Crossref
Panagiotis Grammatikopoulos. 2020. Computational Modelling of Nanomaterials. Computational Modelling of Nanomaterials 161 186 .
Yuri Osetsky & David Rodney. 2020. Comprehensive Nuclear Materials. Comprehensive Nuclear Materials 663 688 .
Lizhan Han, Qingdong Liu & Jianfeng Gu. (2019) High-resolution Transmission Electron Microscopy Characterization of the Structure of Cu Precipitate in a Thermal-aged Multicomponent Steel. Chinese Journal of Mechanical Engineering 32:1.
Crossref
H.J. Kong, C. Xu, C.C. Bu, C. Da, J.H. Luan, Z.B. Jiao, G. Chen & C.T. Liu. (2019) Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions. Acta Materialia 172, pages 150-160.
Crossref
Yankun Dou, Dongjie Wang, Xinfu He, Muhammad Rizwan, Lixia Jia, Shi Wu, Han Cao & Wen Yang. 2019. High-Performance Computing Applications in Numerical Simulation and Edge Computing. High-Performance Computing Applications in Numerical Simulation and Edge Computing 135 151 .
Hao Kong & Chain Liu. (2018) A Review on Nano-Scale Precipitation in Steels. Technologies 6:1, pages 36.
Crossref
Yu Li, Wei Li, Wenqing Liu, Xiaodong Wang, Xueming Hua, Huibin Liu & Xuejun Jin. (2018) The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel. Acta Materialia 146, pages 126-141.
Crossref
Zhen Wang, Guoyi Xu, Pengda Ma, Yanbing Lin, Xiangna Yang & Cuiling Cao. (2017) Isolation and Characterization of a Phosphorus-Solubilizing Bacterium from Rhizosphere Soils and Its Colonization of Chinese Cabbage (Brassica campestris ssp. chinensis). Frontiers in Microbiology 8.
Crossref
Tong Xi, M. Babar Shahzad, Dake Xu, Jinlong Zhao, Chunguang Yang, Min Qi & Ke Yang. (2016) Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study. Materials Science and Engineering: A 675, pages 243-252.
Crossref
Qingdong Liu, Haiming Wen, Han Zhang, Jianfeng Gu, Chuanwei Li & Enrique J. Lavernia. (2016) Effect of Multistage Heat Treatment on Microstructure and Mechanical Properties of High-Strength Low-Alloy Steel. Metallurgical and Materials Transactions A 47:5, pages 1960-1974.
Crossref
C.T. Liu, Z.B. Jiao & J.H. Luan. 2016. Encyclopedia of Iron, Steel, and Their Alloys. Encyclopedia of Iron, Steel, and Their Alloys 875 886 .
Boris Minov, Dmitry Terentyev, Wouter Van Renterghem, Yuri Osetsky & Milan J. Konstantinović. (2014) Effect of low-temperature phase transition on mechanical behavior of Fe–Cu alloys. Materials Science and Engineering: A 597, pages 46-51.
Crossref
Liu Feng, Bangxin Zhou, Jianchao Peng & Junan Wang. (2013) Crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R in reactor pressure vessel model steel. Acta Metallurgica Sinica (English Letters) 26:6, pages 707-712.
Crossref
Allen H. Hunter, Jeffrey D. Farren, John N. DuPont & David N. Seidman. (2012) An Atom-Probe Tomographic Study of Arc Welds in a Multi-Component High-Strength Low-Alloy Steel. Metallurgical and Materials Transactions A 44:4, pages 1741-1759.
Crossref
Jeffrey D. Farren, Allen H. Hunter, John N. Dupont, David N. Seidman, Charles V. Robino & Ernst Kozeschnik. (2012) Microstructural Evolution and Mechanical Properties of Fusion Welds in an Iron-Copper-Based Multicomponent Steel. Metallurgical and Materials Transactions A 43:11, pages 4155-4170.
Crossref
Y.N. Osetsky & D.J. Bacon. 2012. Comprehensive Nuclear Materials. Comprehensive Nuclear Materials 333 356 .
Steven J. Zinkle & Nasr M. Ghoniem. (2011) Prospects for accelerated development of high performance structural materials. Journal of Nuclear Materials 417:1-3, pages 2-8.
Crossref
P Grammatikopoulos, D J Bacon & Yu N Osetsky. (2011) The influence of interaction geometry on the obstacle strength of voids and copper precipitates in iron. Modelling and Simulation in Materials Science and Engineering 19:1, pages 015004.
Crossref
Panagiotis Grammatikopoulos, David John Bacon & Yuri Osetsky. Geometrical Aspects of Dislocation-Obstacle Interaction in Iron. Geometrical Aspects of Dislocation-Obstacle Interaction in Iron.
C. S. Becquart & C. Domain. (2010) Introducing chemistry in atomistic kinetic Monte Carlo simulations of Fe alloys under irradiation. physica status solidi (b) 247:1, pages 9-22.
Crossref
Zhengzheng Chen, Nicholas Kioussis & Nasr Ghoniem. (2009) Influence of nanoscale Cu precipitates in on dislocation core structure and strengthening . Physical Review B 80:18.
Crossref
D.C. Chrzan, J.W. MorrisJr.Jr., Y.N. Osetsky, R.E. Stoller & S.J. Zinkle. (2011) What is the Limit of Nanoparticle Strengthening?. MRS Bulletin 34:3, pages 173-177.
Crossref
Jae-Hyeok Shim, Dong-Ik Kim, Woo-Sang Jung, Young Whan Cho & Brian D. Wirth. (2009) Strengthening of Nanosized bcc Cu Precipitate in bcc Fe: A Molecular Dynamics Study. MATERIALS TRANSACTIONS 50:9, pages 2229-2234.
Crossref
David J. Bacon & Yuri N. Osetsky. (2009) Dislocation—Obstacle Interactions at Atomic Level in Irradiated Metals. Mathematics and Mechanics of Solids 14:1-2, pages 270-283.
Crossref
D.J. Bacon, Y.N. Osetsky & D. Rodney. 2009. 1 90 .
Semyon Vaynman, Dieter Isheim, R. Prakash Kolli, Shrikant P. Bhat, David N. Seidman & Morris E. Fine. (2008) High-Strength Low-Carbon Ferritic Steel Containing Cu-Fe-Ni-Al-Mn Precipitates. Metallurgical and Materials Transactions A 39:2, pages 363-373.
Crossref
D. J. Bacon & Yu. N. Osetsky. (2007) The atomic-scale modeling of dislocation-obstacle interactions in irradiated metals. JOM 59:4, pages 40-45.
Crossref
Jae-Hyeok Shim, Young Whan Cho, Sang Chul Kwon, Whung Whoe Kim & Brian D. Wirth. (2007) Screw dislocation assisted martensitic transformation of a bcc Cu precipitate in bcc Fe. Applied Physics Letters 90:2.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.