36
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Study of creep rupture strength in heat affected zone of 9Cr‐1Mo‐V‐Nb‐N steel by welding thermal cycle simulation

, &
Pages 454-460 | Published online: 09 Dec 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Aravinda Pai, Irappa Sogalad & S. Basavarajappa. (2023) Effect of thickness on mechanical properties of modified 9Cr 1Mo steel welds made by narrow gap hot wire gas tungsten arc welding process. Welding International 37:4, pages 185-205.
Read now
Mariappan K.Vani Shankar & Bhaduri A. K.. (2020) Comparative evaluation of tensile properties of simulated heat affected zones of P91 steel weld joint. Materials at High Temperatures 37:2, pages 114-128.
Read now
Sunil Goyal, K. Laha, K.S. Chandravathi, P. Parameswaran & M.D. Mathew. (2011) Finite element analysis of type IV cracking in 2.25Cr–1Mo steel weldment based on micro-mechanistic approach. Philosophical Magazine 91:23, pages 3128-3154.
Read now
K.S. Chandravathi, K. Laha, K. Bhanu Sankara Rao & S.L. Mannan. (2001) Microstructure and tensile properties of modified 9Cr–1Mo steel (grade 91). Materials Science and Technology 17:5, pages 559-565.
Read now

Articles from other publishers (20)

K. Mariappan, A. Nagesha & M. Vasudevan. (2023) Microstructural Characterization of Simulated and Actual Constituent Regions of P91 Steel Weldment. Welding International, pages 1-41.
Crossref
V. D. Vijayanand, Deepshree D. Awale, Atul R. Ballal, Manjusha M. Thawre & G. V. Prasad Reddy. (2023) Type IV Damage Evolution during Creep of 316LN SS-P91 Steel Dissimilar Weld Joint. Journal of Materials Engineering and Performance.
Crossref
K. Mariappan & A. Nagesha. (2023) Creep-fatigue interaction behavior of simulated microstructures and the actual weldment of P91 steel. Materials Science and Engineering: A 866, pages 144695.
Crossref
Vinay Kumar Pal & Lokendra Pal Singh. (2022) Study on microstructure characterization of fracture frontier of post welds heat treatment and type IV cracking of P92 steel welded joint. Ukrainian Journal of Mechanical Engineering and Materials Science 8:2, pages 1-32.
Crossref
S. Kumar, S. Sirohi, J.G. Thakare, B. Adhithan & C. Pandey. (2021) Role of Mo in the nucleation of intermetallic laves phase. Materials Today: Proceedings 38, pages 2781-2791.
Crossref
K. Mariappan, Vani Shankar & A.K. Bhaduri. (2020) Effect of change in microstructures due to simulation temperatures on the low cycle fatigue behavior of P91 steel. International Journal of Fatigue 140, pages 105847.
Crossref
Chien-Chun Liao, Chu-Chun Wang, Tai-Cheng Chen, Ren-Kae Shiue & Leu-Wen Tsay. (2020) Effects of Thermal Simulation on the Creep Fracture of the Mod. 9Cr-1Mo Weld Metal. Metals 10:9, pages 1181.
Crossref
K. Mariappan, V. Shankar & A.K. Bhaduri. (2020) Effect of microstructure and low cycle fatigue deformation on tensile properties of P91 steel. Materialwissenschaft und Werkstofftechnik 51:8, pages 1088-1099.
Crossref
Chandan Pandey, Manas Mohan Mahapatra, Pradeep Kumar & Nitin Saini. (2018) Some studies on P91 steel and their weldments. Journal of Alloys and Compounds 743, pages 332-364.
Crossref
Qingshan Li, Yinzhong Shen & Pengcheng Han. (2017) Serrated Flow Behavior of Aisi 316l Austenitic Stainless Steel for Nuclear Reactors. IOP Conference Series: Materials Science and Engineering 250, pages 012013.
Crossref
K. S. Chandravathi, Kinkar Laha, C. S. Sasmal, P. Parameswaran, M. Nandagopal, H. M. Tailor, M. D. Mathew, T. Jayakumar & E. Rajendra Kumar. (2014) Response of Phase Transformation Inducing Heat Treatments on Microstructure and Mechanical Properties of Reduced Activation Ferritic-Martensitic Steels of Varying Tungsten Contents. Metallurgical and Materials Transactions A 45:10, pages 4280-4292.
Crossref
K.S. Chandravathi, C.S. Sasmal, K. Laha, P. Parameswaran, M. Nandagopal, V.D. Vijayanand, M.D. Mathew, T. Jayakumar & E. Rajendra Kumar. (2013) Effect of isothermal heat treatment on microstructure and mechanical properties of Reduced Activation Ferritic Martensitic steel. Journal of Nuclear Materials 435:1-3, pages 128-136.
Crossref
K. Laha, K. S. Chandravathi, P. Parameswaran, Sunil Goyal & M. D. Mathew. (2011) A Comparison of Creep Rupture Strength of Ferritic/Austenitic Dissimilar Weld Joints of Different Grades of Cr-Mo Ferritic Steels. Metallurgical and Materials Transactions A 43:4, pages 1174-1186.
Crossref
K.S. Chandravathi, K. Laha, P. Parameswaran & M.D. Mathew. (2012) Effect of microstructure on the critical strain to onset of serrated flow in modified 9Cr–1Mo steel. International Journal of Pressure Vessels and Piping 89, pages 162-169.
Crossref
V. Karthik, K. Laha, P. Parameswaran, K.S. Chandravathi, K.V. Kasiviswanathan, T. Jayakumar & Baldev Raj. (2011) Tensile properties of modified 9Cr-1Mo steel by shear punch testing and correlation with microstructures. International Journal of Pressure Vessels and Piping 88:10, pages 375-383.
Crossref
Xue WANG, Zhuan SHI, Qian-gang PAN & Hong-liang WU. (2009) High-temperature creep properties of fine grained heat-affected zone in P92 weldment. Transactions of Nonferrous Metals Society of China 19, pages s772-s775.
Crossref
K. Laha, K.S. Chandravathi, P. Parameswaran & K. Bhanu Sankara Rao. (2008) Type IV Cracking Susceptibility in Weld Joints of Different Grades of Cr-Mo Ferritic Steel. Metallurgical and Materials Transactions A 40:2, pages 386-397.
Crossref
K. LAHA, K.S. CHANDRAVATHI, P. PARAMESWARAN, K. BHANU SANKARA RAO & S.L. MANNAN. (2007) Characterization of Microstructures across the Heat-Affected Zone of the Modified 9Cr-1Mo Weld Joint to Understand Its Role in Promoting Type IV Cracking. Metallurgical and Materials Transactions A 38:1, pages 58-68.
Crossref
V. Gaffard, A.F. Gourgues-Lorenzon & J. Besson. (2005) High temperature creep flow and damage properties of 9Cr1MoNbV steels: Base metal and weldment. Nuclear Engineering and Design 235:24, pages 2547-2562.
Crossref
V. GAFFARD, A. F. GOURGUES-LORENZON & J. BESSON. (2005) High Temperature Creep Flow and Damage Properties of the Weakest Area of 9Cr1Mo-NbV Martensitic Steel Weldments. ISIJ International 45:12, pages 1915-1924.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.