17
Views
71
CrossRef citations to date
0
Altmetric
Original Article

Effect of DNA Conformation on the Hydroxyl Radical-induced Formation of 8,5′-cyclopurine 2′-deoxyribonucleoside Residues in DNA

, , &
Pages 195-204 | Received 11 Sep 1987, Accepted 18 Feb 1988, Published online: 03 Jul 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (7)

M. Dizdaroglu, E. Coskun & P. Jaruga. (2015) Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radical Research 49:5, pages 525-548.
Read now
Han Yueh, Hongchuan Yu, ChristopherS. Theile, Ayan Pal, Allen Horhota, Nicholas Greco, CarlV. Christianson & LarryW. McLaughlin. (2012) Synthesis and Properties of DNA Containing Cyclonucleosides. Nucleosides, Nucleotides & Nucleic Acids 31:9, pages 661-679.
Read now
Miral Dizdaroglu & Pawel Jaruga. (2012) Mechanisms of free radical-induced damage to DNA. Free Radical Research 46:4, pages 382-419.
Read now
E. Schroder, E.E. Budzinski, J.C. Wallace, J.D. Zimbrick & H.C. Box. (1995) Radiation Chemistry of D(ApCpGpT). International Journal of Radiation Biology 68:5, pages 509-523.
Read now
M. Dizdaroglu. (1992) Measurement of Radiation-induced Damage to DNA at the Molecular Level. International Journal of Radiation Biology 61:2, pages 175-183.
Read now
A.F. Fuciarelli, B.J. Wegher, W.F. Blakely & M. Dizdaroglu. (1990) Yields of Radiation-induced Base Products in DNA: Effects of DNA Conformation and Gassing Conditions. International Journal of Radiation Biology 58:3, pages 397-415.
Read now
C.N. Trumbore, C.T. Hyde, R.D. Hudson, L.A. Jurman, A.G. Gehring & J.K. Masselink. (1989) Ultraviolet Difference Spectral Studies in the Gamma Radiolysis of DNA and Model Compounds. I. Aqueous Solutions of DNA Bases. International Journal of Radiation Biology 56:6, pages 923-941.
Read now

Articles from other publishers (64)

Michał Szewczuk, Karolina Boguszewska, Julia Kaźmierczak-Barańska & Bolesław T. Karwowski. (2021) When UDG and hAPE1 Meet Cyclopurines. How (5′R) and (5′S) 5′,8-Cyclo-2′-deoxyadenosine and 5′,8-Cyclo-2′-deoxyguanosine Affect UDG and hAPE1 Activity?. Molecules 26:17, pages 5177.
Crossref
Yeldar Baiken, Damira Kanayeva, Sabira Taipakova, Regina Groisman, Alexander A. Ishchenko, Dinara Begimbetova, Bakhyt Matkarimov & Murat Saparbaev. (2021) Role of Base Excision Repair Pathway in the Processing of Complex DNA Damage Generated by Oxidative Stress and Anticancer Drugs. Frontiers in Cell and Developmental Biology 8.
Crossref
Boleslaw T. Karwowski. (2020) Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2′-Deoxyguaosine Versus 5′,8-Cyclo-2′-Deoxyadenosines: A Theoretical Approach. Cells 9:2, pages 424.
Crossref
Leona D. Scanlan, Sanem Hosbas Coskun, Pawel Jaruga, Shannon K. Hanna, Christopher M. Sims, Jamie L. Almeida, David Catoe, Erdem Coskun, Rachel Golan, Miral Dizdaroglu & Bryant C. Nelson. (2019) Measurement of Oxidatively Induced DNA Damage in Caenorhabditis elegans with High-Salt DNA Extraction and Isotope-Dilution Mass Spectrometry . Analytical Chemistry 91:19, pages 12149-12155.
Crossref
Chryssostomos Chatgilialoglu, Carla Ferreri, Nicholas E. Geacintov, Marios G. Krokidis, Yuan Liu, Annalisa Masi, Vladimir Shafirovich, Michael A. Terzidis & Pawlos S. Tsegay. (2019) 5′,8-Cyclopurine Lesions in DNA Damage: Chemical, Analytical, Biological, and Diagnostic Significance. Cells 8:6, pages 513.
Crossref
Pawel Jaruga, Erdem Coskun, Kimani Kimbrough, Annie Jacob, W. Edward Johnson & Miral Dizdaroglu. (2017) Biomarkers of oxidatively induced DNA damage in dreissenid mussels: A genotoxicity assessment tool for the Laurentian Great Lakes. Environmental Toxicology 32:9, pages 2144-2153.
Crossref
Yang Yu, Yuxiang Cui, Laura J. Niedernhofer & Yinsheng Wang. (2016) Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage. Chemical Research in Toxicology 29:12, pages 2008-2039.
Crossref
A. Merecz & B. T. Karwowski. (2016) DNA tandem lesion: 5′,8-cyclo-2′-deoxyadenosine. The influence on human health. Molecular Biology 50:6, pages 793-798.
Crossref
Ibtissam Talhaoui, Vladimir Shafirovich, Zhi Liu, Christine Saint-Pierre, Zhiger Akishev, Bakhyt T. Matkarimov, Didier Gasparutto, Nicholas E. Geacintov & Murat Saparbaev. (2015) Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways. Journal of Biological Chemistry 290:23, pages 14610-14617.
Crossref
Miral Dizdaroglu. (2015) Oxidatively induced DNA damage and its repair in cancer. Mutation Research/Reviews in Mutation Research 763, pages 212-245.
Crossref
Konstantin Kropachev, Shuang Ding, Michael A. Terzidis, Annalisa Masi, Zhi Liu, Yuqin Cai, Marina Kolbanovskiy, Chryssostomos Chatgilialoglu, Suse Broyde, Nicholas E. Geacintov & Vladimir Shafirovich. (2014) Structural basis for the recognition of diastereomeric 5′,8-cyclo-2′-deoxypurine lesions by the human nucleotide excision repair system. Nucleic Acids Research 42:8, pages 5020-5032.
Crossref
Takaaki Iwamoto, Philip J. Brooks, Tomohisa Nishiwaki, Kazuki Nishimura, Nobuhiko Kobayashi, Shigeki Sugiura & Toshio Mori. (2014) Quantitative and in situ Detection of Oxidatively Generated DNA Damage 8,5′-Cyclo-2′-Deoxyadenosine Using an Immunoassay with a Novel Monoclonal Antibody . Photochemistry and Photobiology, pages n/a-n/a.
Crossref
Naoto Kamakura, Junpei Yamamoto, Philip J. Brooks, Shigenori Iwai & Isao Kuraoka. (2012) Effects of 5′,8-Cyclodeoxyadenosine Triphosphates on DNA Synthesis. Chemical Research in Toxicology 25:12, pages 2718-2724.
Crossref
Tatiana Zaliznyak, Mark Lukin & Carlos de los Santos. (2012) Structure and Stability of Duplex DNA Containing (5′ S )-5′,8-Cyclo-2′-deoxyadenosine: An Oxidatively Generated Lesion Repaired by NER . Chemical Research in Toxicology 25:10, pages 2103-2111.
Crossref
Boleslaw T. Karwowski. (2012) Formation of 5′,8-cyclo-2′-deoxyadenosine in dA::T pairs as a model of double stranded DNA: A theoretical quantum mechanics study. Computational and Theoretical Chemistry 997, pages 55-62.
Crossref
Hai Huang, Rajat S. Das, Ashis K. Basu & Michael P. Stone. (2012) Structures of (5′ S )-8,5′-Cyclo-2′-deoxyguanosine Mismatched with dA or dT . Chemical Research in Toxicology 25:2, pages 478-490.
Crossref
Hai Huang, Rajat S. Das, Ashis K. Basu & Michael P. Stone. (2011) Structure of (5′ S )-8,5′-Cyclo-2′-deoxyguanosine in DNA . Journal of the American Chemical Society 133:50, pages 20357-20368.
Crossref
Alessandro Sinigaglia. 2011. Self-Healing at the Nanoscale. Self-Healing at the Nanoscale 45 68 .
Chryssostomos Chatgilialoglu, Carla Ferreri & Michael A. Terzidis. (2011) Purine 5′,8-cyclonucleoside lesions: chemistry and biology. Chemical Society Reviews 40:3, pages 1368.
Crossref
Peter C. Dedon. 2011. Chemical Carcinogenesis. Chemical Carcinogenesis 209 225 .
Marguerite Pitié & Geneviève Pratviel. (2010) Activation of DNA Carbon−Hydrogen Bonds by Metal Complexes. Chemical Reviews 110:2, pages 1018-1059.
Crossref
Nourreddine Belmadoui, Fabien Boussicault, Maurizio Guerra, Jean-Luc Ravanat, Chryssostomos Chatgilialoglu & Jean Cadet. (2010) Radiation-induced formation of purine 5′,8-cyclonucleosides in isolated and cellular DNA: high stereospecificity and modulating effect of oxygen. Organic & Biomolecular Chemistry 8:14, pages 3211.
Crossref
Boleslaw T. Karwowski. (2010) Formation of 5′,8-cyclo-2′-deoxyadenosine in single strand DNA. Theoretical quantum mechanics study. Organic & Biomolecular Chemistry 8:7, pages 1603.
Crossref
Boleslaw T. Karwowski. (2009) 5′,8-Cyclopurine-2′-deoxynucleosides: Molecular structure and charge distribution – DFT study in gaseous and aqueous phase. Journal of Molecular Structure: THEOCHEM 915:1-3, pages 73-78.
Crossref
Erin G. Prestwich & Peter C. Dedon. 2009. Endogenous Toxins. Endogenous Toxins 1 42 .
Pawel Jaruga, Yan Xiao, Bryant C. Nelson & Miral Dizdaroglu. (2009) Measurement of (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines in DNA in vivo by liquid chromatography/isotope-dilution tandem mass spectrometry. Biochemical and Biophysical Research Communications 386:4, pages 656-660.
Crossref
Richard A. Manderville. 2009. 177 218 .
Pawel Jaruga, Güldal Kirkali & Miral Dizdaroglu. (2008) Measurement of formamidopyrimidines in DNA. Free Radical Biology and Medicine 45:12, pages 1601-1609.
Crossref
Pawel Jaruga & Miral Dizdaroglu. (2008) 8,5′-Cyclopurine-2′-deoxynucleosides in DNA: Mechanisms of formation, measurement, repair and biological effects. DNA Repair 7:9, pages 1413-1425.
Crossref
P.J. Brooks. (2008) The 8,5′-cyclopurine-2′-deoxynucleosides: Candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair 7:7, pages 1168-1179.
Crossref
Liliana B. Jimenez, Susana Encinas, Chryssostomos Chatgilialoglu & Miguel A. Miranda. (2008) Solar one-way photoisomerisation of 5′,8-cyclo-2′-deoxyadenosine. Organic & Biomolecular Chemistry 6:6, pages 1083.
Crossref
Chryssostomos Chatgilialoglu, Rita Bazzanini, Liliana B. Jimenez & Miguel A. Miranda. (2007) (5′ S )- and (5′ R )-5′,8-Cyclo-2′-deoxyguanosine: Mechanistic Insights on the 2′-Deoxyguanosin-5′-yl Radical Cyclization . Chemical Research in Toxicology 20:12, pages 1820-1824.
Crossref
Antonio Manetto, Dimitris Georganakis, Leondios Leondiadis, Thanasis Gimisis, Peter Mayer, Thomas Carell & Chryssostomos Chatgilialoglu. (2007) Independent Generation of C5‘-Nucleosidyl Radicals in Thymidine and 2‘-Deoxyguanosine. The Journal of Organic Chemistry 72:10, pages 3659-3666.
Crossref
Aya Yamamoto, Yu Nakamura, Nobuhiko Kobayashi, Takaaki Iwamoto, Akira Yoshioka, Hiroki Kuniyasu, Toshifumi Kishimoto & Toshio Mori. (2007) Neurons and astrocytes exhibit lower activities of global genome nucleotide excision repair than do fibroblasts. DNA Repair 6:5, pages 649-657.
Crossref
Clemens von Sonntag. 2006. Free-Radical-Induced DNA Damage and Its Repair. Free-Radical-Induced DNA Damage and Its Repair 357 482 .
Liliana B. Jimenez, Susana Encinas, Miguel A. Miranda, Maria Luisa Navacchia & Chryssostomos Chatgilialoglu. (2004) The photochemistry of 8-bromo-2′-deoxyadenosine. A direct entry to cyclopurine lesions. Photochemical & Photobiological Sciences 3:11-12, pages 1042-1046.
Crossref
Mark D. Evans, Miral Dizdaroglu & Marcus S. Cooke. (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutation Research/Reviews in Mutation Research 567:1, pages 1-61.
Crossref
Marcus S. Cooke, Mark D. Evans, Miral Dizdaroglu & Joseph Lunec. (2003) Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB Journal 17:10, pages 1195-1214.
Crossref
Laurent Gros, Murat K Saparbaev & Jacques Laval. (2002) Enzymology of the repair of free radicals-induced DNA damage. Oncogene 21:58, pages 8905-8925.
Crossref
Miral Dizdaroglu, Pawel Jaruga, Mustafa Birincioglu & Henry Rodriguez. (2002) Free radical-induced damage to DNA: mechanisms and measurement 1,2 1This article is part of a series of reviews on “Oxidative DNA Damage and Repair.” The full list of papers may be found on the homepage of the journal. 2Guest Editor: Miral Dizdaroglu. Free Radical Biology and Medicine 32:11, pages 1102-1115.
Crossref
Pawel Jaruga, Mustafa Birincioglu, Henry Rodriguez & Miral Dizdaroglu. (2002) Mass Spectrometric Assays for the Tandem Lesion 8,5‘-Cyclo-2‘-deoxyguanosine in Mammalian DNA. Biochemistry 41:11, pages 3703-3711.
Crossref
Chryssostomos Chatgilialoglu & Peter O'Neill. (2001) Free radicals associated with DNA damage. Experimental Gerontology 36:9, pages 1459-1471.
Crossref
Miral Dizdaroglu, Pawel Jaruga & Henry Rodriguez. (2001) Identification and quantification of 8,5′-cyclo-2′-deoxy-adenosine in DNA by liquid chromatography/ mass spectrometry. Free Radical Biology and Medicine 30:7, pages 774-784.
Crossref
Philip J. Brooks, Dean S. Wise, David A. Berry, Joseph V. Kosmoski, Michael J. Smerdon, Robert L. Somers, Hugh Mackie, Alexander Y. Spoonde, Eric J. Ackerman, Katherine Coleman, Robert E. Tarone & Jay H. Robbins. (2000) The Oxidative DNA Lesion 8,5′-(S)-Cyclo-2′-deoxyadenosine Is Repaired by the Nucleotide Excision Repair Pathway and Blocks Gene Expression in Mammalian Cells. Journal of Biological Chemistry 275:29, pages 22355-22362.
Crossref
Roman Flyunt, Rita Bazzanini, Chryssostomos Chatgilialoglu & Quinto G. Mulazzani. (2000) Fate of the 2‘-Deoxyadenosin-5‘-yl Radical under Anaerobic Conditions. Journal of the American Chemical Society 122:17, pages 4225-4226.
Crossref
Isao Kuraoka, Christina Bender, Anthony Romieu, Jean Cadet, Richard D. Wood & Tomas Lindahl. (2000) Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proceedings of the National Academy of Sciences 97:8, pages 3832-3837.
Crossref
Miral Dizdaroglu. 1999. Advances in DNA Damage and Repair. Advances in DNA Damage and Repair 67 87 .
Byung YuMiral Dizdaroglu. 1998. Methods in Aging Research. Methods in Aging Research 607 620 .
Peter Møller & Håkan Wallin. (1998) Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product. Mutation Research/Reviews in Mutation Research 410:3, pages 271-290.
Crossref
Ernst S. Henle & Stuart Linn. (1997) Formation, Prevention, and Repair of DNA Damage by Iron/Hydrogen Peroxide. Journal of Biological Chemistry 272:31, pages 19095-19098.
Crossref
Teresa Roldán-Arjona & Barbara Sedgwick. (1996) DNA base damage induced by ionizing radiation recognized byEscherichia coli UvrABC nuclease but not Nth or Fpg proteins. Molecular Carcinogenesis 16:4, pages 188-196.
Crossref
Anthony P. Breen & John A. Murphy. (1995) Reactions of oxyl radicals with DNA. Free Radical Biology and Medicine 18:6, pages 1033-1077.
Crossref
Miral Dizdaroglu. 1994. Oxygen Radicals in Biological Systems Part D. Oxygen Radicals in Biological Systems Part D 3 16 .
Tomas Lindahl. (1993) Instability and decay of the primary structure of DNA. Nature 362:6422, pages 709-715.
Crossref
David Becker & Michael D. Sevilla. 1993. Advances in Radiation Biology - DNA and Chromatin Damage Caused by Radiation. Advances in Radiation Biology - DNA and Chromatin Damage Caused by Radiation 121 180 .
James A. McCloskey & Pamela F. Crain. (1992) Progress in mass spectrometry of nucleic acid constituents: analysis of xenobiotic modifications and measurements at high mass. International Journal of Mass Spectrometry and Ion Processes 118-119, pages 593-615.
Crossref
James A. McCloskey & Pamela F. Crain. 1992. Advances in Mass Spectrometry. Advances in Mass Spectrometry 593 615 .
Mikinori Kuwabara. (1991) Chemical processes induced by OH attack on nucleic acids. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 37:5-6, pages 691-704.
Crossref
Miral Dizdaroglu. (1991) Chemical determination of free radical-induced damage to DNA. Free Radical Biology and Medicine 10:3-4, pages 225-242.
Crossref
A. F. Fuciarelli, W. F. Blakely, B. J. Wegher & M. Dizdaroglu. 1991. The Early Effects of Radiation on DNA. The Early Effects of Radiation on DNA 405 408 .
. (1990) Review. Clinical Chemistry and Laboratory Medicine 28:9.
Crossref
Miral Dizdaroglu. 1990. Mass Spectrometry. Mass Spectrometry 842 857 .
Miral Dizdaroglu & Ewa Gajewski. 1990. Oxygen Radicals in Biological Systems Part B: Oxygen Radicals and Antioxidants. Oxygen Radicals in Biological Systems Part B: Oxygen Radicals and Antioxidants 530 544 .
E. Blakely, P. Chang, L. Lommel, K. Bjornstad, M. Dixon, C. Tobias, K. Kumar & W.F. Blakely. (1989) Cell-cycle radiation response: Role of intracellular factors. Advances in Space Research 9:10, pages 177-186.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.