761
Views
83
CrossRef citations to date
0
Altmetric
Original Articles

A One-dimensional Finite Element Method for Simulation-based Medical Planning for Cardiovascular Disease

, , , , , & show all
Pages 195-206 | Published online: 14 Sep 2010

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Dániel Gyürki, Tamás Horváth, Sára Till, Attila Egri, Csilla Celeng, György Paál, Béla Merkely, Pál Maurovich-Horvat & Gábor Halász. (2023) Central arterial pressure and patient-specific model parameter estimation based on radial pressure measurements. Computer Methods in Biomechanics and Biomedical Engineering 26:11, pages 1320-1329.
Read now
Xiaofei Wang, Jose-Maria Fullana & Pierre-Yves Lagrée. (2015) Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model. Computer Methods in Biomechanics and Biomedical Engineering 18:15, pages 1704-1725.
Read now
Alberto Coccarelli & Perumal Nithiarasu. (2015) A Robust Finite Element Modeling Approach to Conjugate Heat Transfer in Flexible Elastic Tubes and Tube Networks. Numerical Heat Transfer, Part A: Applications 67:5, pages 513-530.
Read now
Brooke N. Steele, Mette S. Olufsen & Charles A. Taylor. (2007) Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Computer Methods in Biomechanics and Biomedical Engineering 10:1, pages 39-51.
Read now
Nathan M. Wilson, Frank R. Arko & Charles A. Taylor. (2005) Predicting changes in blood flow in patient-specific operative plans for treating aortoiliac occlusive disease. Computer Aided Surgery 10:4, pages 257-277.
Read now

Articles from other publishers (78)

Charles A. Taylor, Kersten Petersen, Nan Xiao, Matthew Sinclair, Ying Bai, Sabrina R. Lynch, Adam UpdePac & Michiel Schaap. (2023) Patient-specific modeling of blood flow in the coronary arteries. Computer Methods in Applied Mechanics and Engineering 417, pages 116414.
Crossref
Elisa Fevola, Tommaso Bradde, Piero Triverio & Stefano Grivet-Talocia. (2023) A Vector Fitting Approach for the Automated Estimation of Lumped Boundary Conditions of 1D Circulation Models. Cardiovascular Engineering and Technology 14:4, pages 505-525.
Crossref
Jordi Alastruey, Peter H. Charlton, Vasiliki Bikia, Birute Paliakaite, Bernhard Hametner, Rosa Maria Bruno, Marijn P. Mulder, Samuel Vennin, Senol Piskin, Ashraf W. Khir, Andrea Guala, Christopher C. Mayer, Jonathan Mynard, Alun D. Hughes, Patrick Segers & Berend E. Westerhof. (2023) Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet. American Journal of Physiology-Heart and Circulatory Physiology 325:1, pages H1-H29.
Crossref
Joaquín Flores Gerónimo, Alireza Keramat, Jordi Alastruey & Huan-Feng Duan. (2022) Computational modelling and application of mechanical waves to detect arterial network anomalies: Diagnosis of common carotid stenosis. Computer Methods and Programs in Biomedicine 227, pages 107213.
Crossref
Martin R. Pfaller, Jonathan Pham, Aekaansh Verma, Luca Pegolotti, Nathan M. Wilson, David W. Parker, Weiguang Yang & Alison L. Marsden. (2022) Automated generation of 0D and 1D reduced‐order models of patient‐specific blood flow . International Journal for Numerical Methods in Biomedical Engineering 38:10.
Crossref
Lu Wang, Sardar Ansari, Yingjie Cai, Brendan McCracken, M. Hakam Tiba, Kevin R. Ward, Kayvan Najarian & Kenn R. Oldham. (2022) Tracking Peripheral Artery Motion and Vascular Resistance With a Multimodal Wearable Sensor Under Pressure Perturbations. Journal of Biomechanical Engineering 144:8.
Crossref
Ashutosh Dash, Karan Jain, Nirmalya Ghosh & Amit Patra. (2022) Non-invasive detection of coronary artery disease from photoplethysmograph using lumped parameter modelling. Biomedical Signal Processing and Control 77, pages 103781.
Crossref
Louis Garber, Seyedvahid Khodaei & Zahra Keshavarz-Motamed. (2021) The Critical Role of Lumped Parameter Models in Patient-Specific Cardiovascular Simulations. Archives of Computational Methods in Engineering 29:5, pages 2977-3000.
Crossref
Mehran Mirramezani & Shawn C. Shadden. (2022) Distributed lumped parameter modeling of blood flow in compliant vessels. Journal of Biomechanics 140, pages 111161.
Crossref
Noelia Grande Gutiérrez, Talid Sinno & Scott L. Diamond. (2021) A 1D–3D Hybrid Model of Patient-Specific Coronary Hemodynamics. Cardiovascular Engineering and Technology 13:2, pages 331-342.
Crossref
Martin R. Pfaller, Jonathan Pham, Nathan M. Wilson, David W. Parker & Alison L. Marsden. (2021) On the Periodicity of Cardiovascular Fluid Dynamics Simulations. Annals of Biomedical Engineering 49:12, pages 3574-3592.
Crossref
Mohammad Hasan, B. P. Patel & S. Pradyumna. (2021) Computationally efficient finite element formulation for blood flow analysis in multi‐layered aorta modeled as viscoelastic material. International Journal for Numerical Methods in Engineering 122:16, pages 4313-4332.
Crossref
Mohammad Hasan, Badri Prasad Patel & Sathyasimha Pradyumna. (2021) Influence of cross‐sectional velocity profile on flow characteristics of arterial wall modeled as elastic and viscoelastic material. International Journal for Numerical Methods in Biomedical Engineering 37:6.
Crossref
Weiwei Jin & Jordi Alastruey. (2021) Arterial pulse wave propagation across stenoses and aneurysms: assessment of one-dimensional simulations against three-dimensional simulations and in vitro measurements . Journal of The Royal Society Interface 18:177.
Crossref
Md. Hasan, B. P. Patel & S. Pradyumna. (2021) A benchmark study on the axial velocity profile of wave propagation in deformable blood vessels. Physics of Fluids 33:4.
Crossref
Casey M. Fleeter, Gianluca Geraci, Daniele E. Schiavazzi, Andrew M. Kahn & Alison L. Marsden. (2020) Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Computer Methods in Applied Mechanics and Engineering 365, pages 113030.
Crossref
Weiguang Yang, Jeffrey A. Feinstein & Alison L. Marsden. 2020. 3-Dimensional Modeling in Cardiovascular Disease. 3-Dimensional Modeling in Cardiovascular Disease 155 175 .
Alberto Coccarelli, Arul Prakash & Perumal Nithiarasu. (2019) A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models. Biomechanics and Modeling in Mechanobiology 18:4, pages 939-951.
Crossref
Hayder M. Hasan, Alberto Coccarelli & Perumal Nithiarasu. (2018) Novel semi-implicit, locally conservative Galerkin (SILCG) methods: Application to blood flow in a systemic circulation. Computer Methods in Applied Mechanics and Engineering 332, pages 217-233.
Crossref
Wouter Huberts, Stefan G.H. Heinen, Niek Zonnebeld, Daniel A.F. van den Heuvel, Jean-Paul P.M. de Vries, Jan H.M. Tordoir, D. Rodney Hose, Tammo Delhaas & Frans N. van de Vosse. (2018) What is needed to make cardiovascular models suitable for clinical decision support? A viewpoint paper. Journal of Computational Science 24, pages 68-84.
Crossref
Andrea Arnold, Christina Battista, Daniel Bia, Yanina Zócalo German, Ricardo L. Armentano, Hien Tran & Mette S. Olufsen. (2017) Uncertainty Quantification in a Patient-Specific One-Dimensional Arterial Network Model: EnKF-Based Inflow Estimator. Journal of Verification, Validation and Uncertainty Quantification 2:1.
Crossref
Soroush Safaei, Christopher P. Bradley, Vinod Suresh, Kumar Mithraratne, Alexandre Muller, Harvey Ho, David Ladd, Leif R. Hellevik, Stig W. Omholt, J. Geoffrey Chase, Lucas O. Müller, Sansuke M. Watanabe, Pablo J. Blanco, Bernard de Bono & Peter J. Hunter. (2016) Roadmap for cardiovascular circulation model. The Journal of Physiology 594:23, pages 6909-6928.
Crossref
Tao Du, Dan Hu & David Cai. (2016) A fast algorithm for the simulation of arterial pulse waves. Journal of Computational Physics 314, pages 450-464.
Crossref
Aymen Laadhari & Alfio Quarteroni. (2016) Numerical modeling of heart valves using resistive Eulerian surfaces. International Journal for Numerical Methods in Biomedical Engineering 32:5, pages e02743.
Crossref
A. Quarteroni, A. Veneziani & C. Vergara. (2016) Geometric multiscale modeling of the cardiovascular system, between theory and practice. Computer Methods in Applied Mechanics and Engineering 302, pages 193-252.
Crossref
CHRISTINA BATTISTA, DANIEL BIA, YANINA ZÓCALO GERMÁN, RICARDO L. ARMENTANO, MANSOOR A. HAIDER & METTE S. OLUFSEN. (2016) WAVE PROPAGATION IN A 1D FLUID DYNAMICS MODEL USING PRESSURE-AREA MEASUREMENTS FROM OVINE ARTERIES. Journal of Mechanics in Medicine and Biology 16:02, pages 1650007.
Crossref
Hamidreza Gharahi, Byron A. Zambrano, David C. Zhu, J. Kevin DeMarco & Seungik Baek. (2016) Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. International Journal of Advances in Engineering Sciences and Applied Mathematics 8:1, pages 46-60.
Crossref
Jelle T. C. Schrauwen, Dion J. Koeze, Jolanda J. Wentzel, Frans N. van de Vosse, Anton F. W. van der Steen & Frank J. H. Gijsen. (2014) Fast and Accurate Pressure-Drop Prediction in Straightened Atherosclerotic Coronary Arteries. Annals of Biomedical Engineering 43:1, pages 59-67.
Crossref
O.C. Zienkiewicz, R.L. Taylor & P. Nithiarasu. 2014. The Finite Element Method for Fluid Dynamics. The Finite Element Method for Fluid Dynamics 451 484 .
O.C. Zienkiewicz, R.L. Taylor & P. Nithiarasu. 2014. The Finite Element Method for Fluid Dynamics. The Finite Element Method for Fluid Dynamics 423 449 .
Trung Q. Le, Satish T. S. Bukkapatnam & Ranga Komanduri. (2013) Real-Time Lumped Parameter Modeling of Cardiovascular Dynamics Using Electrocardiogram Signals: Toward Virtual Cardiovascular Instruments. IEEE Transactions on Biomedical Engineering 60:8, pages 2350-2360.
Crossref
Mette S. Olufsen & Johnny T. Ottesen. (2012) A practical approach to parameter estimation applied to model predicting heart rate regulation. Journal of Mathematical Biology 67:1, pages 39-68.
Crossref
Clement Kleinstreuer, Emily Childress & Andrew Kennedy. 2013. Transport in Biological Media. Transport in Biological Media 391 416 .
Jack Lee & Nicolas P. Smith. (2012) The Multi-Scale Modelling of Coronary Blood Flow. Annals of Biomedical Engineering 40:11, pages 2399-2413.
Crossref
Philippe Reymond, Fabienne Perren, François Lazeyras & Nikos Stergiopulos. (2012) Patient-specific mean pressure drop in the systemic arterial tree, a comparison between 1-D and 3-D models. Journal of Biomechanics 45:15, pages 2499-2505.
Crossref
Philippe Reymond, Orestis Vardoulis & Nikos Stergiopulos. (2012) Generic and patient-specific models of the arterial tree. Journal of Clinical Monitoring and Computing 26:5, pages 375-382.
Crossref
OMER SAN & ANNE E. STAPLES. (2012) AN IMPROVED MODEL FOR REDUCED-ORDER PHYSIOLOGICAL FLUID FLOWS. Journal of Mechanics in Medicine and Biology 12:03, pages 1250052.
Crossref
W. Huberts, A.S. Bode, W. Kroon, R.N. Planken, J.H.M. Tordoir, F.N. van de Vosse & E.M.H. Bosboom. (2012) A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Medical Engineering & Physics 34:2, pages 233-248.
Crossref
Usik Lee & Injoon Jang. (2012) Spectral element modeling and analysis of the blood flows in viscoelastic vessels. Applied Mathematics and Computation 218:13, pages 7295-7307.
Crossref
. (2012) An evaluation of dynamic outlet boundary conditions in a 1D fluid dynamics model. Mathematical Biosciences and Engineering 9:1, pages 61-74.
Crossref
Kristóf Ralovich, Razvan Ionasec, Viorel Mihalef, Puneet Sharma, Bogdan Georgescu, Allen Everett, Nassir Navab & Dorin Comaniciu. 2012. Computational Biomechanics for Medicine. Computational Biomechanics for Medicine 97 106 .
Yubing Shi, Patricia Lawford & Rodney Hose. (2011) Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System. BioMedical Engineering OnLine 10:1.
Crossref
Rashmi RaghuIrene E. Vignon-Clementel, C. Alberto FigueroaCharles A. Taylor. (2011) Comparative Study of Viscoelastic Arterial Wall Models in Nonlinear One-Dimensional Finite Element Simulations of Blood Flow. Journal of Biomechanical Engineering 133:8.
Crossref
Philippe Reymond, Yvette Bohraus, Fabienne Perren, Francois Lazeyras & Nikos Stergiopulos. (2011) Validation of a patient-specific one-dimensional model of the systemic arterial tree. American Journal of Physiology-Heart and Circulatory Physiology 301:3, pages H1173-H1182.
Crossref
Kendall S. Hunter, Steven R. Lammers & Robin Shandas. 2011. Comprehensive Physiology. Comprehensive Physiology 1413 1435 .
R. Raghu & C.A. Taylor. (2011) Verification of a one-dimensional finite element method for modeling blood flow in the cardiovascular system incorporating a viscoelastic wall model. Finite Elements in Analysis and Design 47:6, pages 586-592.
Crossref
P.J. Blanco, J.S. Leiva, R.A. Feijóo & G.C. Buscaglia. (2011) Black-box decomposition approach for computational hemodynamics: One-dimensional models. Computer Methods in Applied Mechanics and Engineering 200:13-16, pages 1389-1405.
Crossref
Frans N. van de VosseNikos Stergiopulos. (2011) Pulse Wave Propagation in the Arterial Tree. Annual Review of Fluid Mechanics 43:1, pages 467-499.
Crossref
Brooke N. Steele, Daniela Valdez-Jasso, Mansoor A. Haider & Mette S. Olufsen. (2011) Predicting Arterial Flow and Pressure Dynamics Using a 1D Fluid Dynamics Model with a Viscoelastic Wall. SIAM Journal on Applied Mathematics 71:4, pages 1123-1143.
Crossref
Tomer Anor, Leopold Grinberg, Hyoungsu Baek, Joseph R. Madsen, Mahesh V. Jayaraman & George E. Karniadakis. (2010) Modeling of blood flow in arterial trees. WIREs Systems Biology and Medicine 2:5, pages 612-623.
Crossref
C. G. Giannopapa, J. M. B. Kroot, A. S. Tijsseling, M. C. M. Rutten & F. N. van de Vosse. (2010) Wave Propagation in Thin-Walled Aortic Analogues. Journal of Fluids Engineering 132:2.
Crossref
Vitaliy L. Rayz & Stanley A. Berger. 2010. Computational Modeling in Biomechanics. Computational Modeling in Biomechanics 171 206 .
Diane A. de Zélicourt, Brooke N. Steele & Ajit P. Yoganathan. 2011. Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems. Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems 343 373 .
Philippe Reymond, Fabrice Merenda, Fabienne Perren, Daniel Rüfenacht & Nikos Stergiopulos. (2009) Validation of a one-dimensional model of the systemic arterial tree. American Journal of Physiology-Heart and Circulatory Physiology 297:1, pages H208-H222.
Crossref
R.B. Clipp & B.N. Steele. (2009) Impedance Boundary Conditions for the Pulmonary Vasculature Including the Effects of Geometry, Compliance, and Respiration. IEEE Transactions on Biomedical Engineering 56:3, pages 862-870.
Crossref
JOSE-MARIA FULLANA & STÉPHANE ZALESKI. (2009) A branched one-dimensional model of vessel networks. Journal of Fluid Mechanics 621, pages 183-204.
Crossref
L Grinberg, T Anor, JR Madsen, A Yakhot & GE Karniadakis. (2009) LARGE-SCALE SIMULATION OF THE HUMAN ARTERIAL TREE. Clinical and Experimental Pharmacology and Physiology 36:2, pages 194-205.
Crossref
Usik Lee, Bosung Seo & Injoon Jang. (2009) Spectral element modeling and analysis of the blood flow through a human blood vessel. Journal of Mechanical Science and Technology 22:8, pages 1612-1619.
Crossref
J. P. Mynard & P. Nithiarasu. (2008) A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Communications in Numerical Methods in Engineering 24:5, pages 367-417.
Crossref
J Lee & N Smith. (2008) Development and application of a one-dimensional blood flow model for microvascular networks. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 222:4, pages 487-511.
Crossref
B.N. Steele. (2007) Using one-dimensional finite element analysis to estimate differential pressure of renal artery stenoses. Using one-dimensional finite element analysis to estimate differential pressure of renal artery stenoses.
V.B. Kolachalama, N.W. Bressloff, P.B. Nair & C.P. Shearman. (2007) Predictive Haemodynamics in a One-Dimensional Human Carotid Artery Bifurcation. Part I: Application to Stent Design. IEEE Transactions on Biomedical Engineering 54:5, pages 802-812.
Crossref
Ryan L. Spilker, Jeffrey A. Feinstein, David W. Parker, V. Mohan Reddy & Charles A. Taylor. (2007) Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries. Annals of Biomedical Engineering 35:4, pages 546-559.
Crossref
Sompol Permpongkosol, Theresa L. Nicol, Hema Khurana, Richard E. Link, Qihui Jim Zhai, Louis R. Kavoussi & Stephen B. Solomon. (2007) Thermal Maps Around Two Adjacent Cryoprobes Creating Overlapping Ablations in Porcine Liver, Lung, and Kidney. Journal of Vascular and Interventional Radiology 18:2, pages 283-287.
Crossref
Koen S. Matthys, Jordi Alastruey, Joaquim Peiró, Ashraf W. Khir, Patrick Segers, Pascal R. Verdonck, Kim H. Parker & Spencer J. Sherwin. (2007) Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. Journal of Biomechanics 40:15, pages 3476-3486.
Crossref
Janice J. Yeung, Hyun Jin Kim, Thomas A. Abbruzzese, Irene E. Vignon-Clementel, Mary T. Draney-Blomme, Kay K. Yeung, Inder Perkash, Robert J. Herfkens, Charles A. Taylor & Ronald L. Dalman. (2006) Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. Journal of Vascular Surgery 44:6, pages 1254-1265.e1.
Crossref
Ryo Torii, Marie Oshima, Toshio Kobayashi, Kiyoshi Takagi & Tayfun E. Tezduyar. (2006) Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures. Computational Mechanics 38:4-5, pages 482-490.
Crossref
Irene E. Vignon-Clementel, C. Alberto Figueroa, Kenneth E. Jansen & Charles A. Taylor. (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering 195:29-32, pages 3776-3796.
Crossref
Nathan Wilson, Frank Arko & Charles Taylor. (2005) Predicting changes in blood flow in patient-specific operative plans for treating aortoiliac occlusive disease. Computer Aided Surgery 10:4, pages 257-277.
Crossref
ANNE M. ROBERTSON & ADÉLIA SEQUEIRA. (2011) A DIRECTOR THEORY APPROACH FOR MODELING BLOOD FLOW IN THE ARTERIAL SYSTEM: AN ALTERNATIVE TO CLASSICAL 1D MODELS. Mathematical Models and Methods in Applied Sciences 15:06, pages 871-906.
Crossref
Marie Oshima, Hiroyuki Sakai & Ryo Torii. (2005) Modelling of inflow boundary conditions for image‐based simulation of cerebrovascular flow. International Journal for Numerical Methods in Fluids 47:6-7, pages 603-617.
Crossref
Charles A. Taylor. 2004. Encyclopedia of Computational Mechanics. Encyclopedia of Computational Mechanics.
Irene E. Vignon & Charles A. Taylor. (2004) Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries. Wave Motion 39:4, pages 361-374.
Crossref
Charles A. TaylorMary T. Draney. (2004) E XPERIMENTAL AND C OMPUTATIONAL M ETHODS IN C ARDIOVASCULAR F LUID M ECHANICS . Annual Review of Fluid Mechanics 36:1, pages 197-231.
Crossref
Marie Oshima. (2004) Image -Based Simulation for Cardiovascular System. Journal of the Society of Mechanical Engineers 107:1026, pages 361-364.
Crossref
Nathan Wilson, Frank R. Arko & Charles Taylor. 2004. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004 422 429 .
B.N. Steele, M.T. Draney, J.P. Ku & C.A. Taylor. (2003) Internet-based system for simulation-based medical planning for cardiovascular disease. IEEE Transactions on Information Technology in Biomedicine 7:2, pages 123-129.
Crossref
B.N. Steele, Jing Wan, J.P. Ku, T.J.R. Hughes & C.A. Taylor. (2003) In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts. IEEE Transactions on Biomedical Engineering 50:6, pages 649-656.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.