580
Views
71
CrossRef citations to date
0
Altmetric
Original Articles

Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm – FSI modelling

, , , , , & show all
Pages 73-81 | Received 28 Jun 2007, Accepted 31 Mar 2008, Published online: 05 Jan 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Mohammadali Sharzehee, Seyed Saeid Khalafvand & Hai-Chao Han. (2018) Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis. Computer Methods in Biomechanics and Biomedical Engineering 21:3, pages 219-231.
Read now
Anastasios Raptis, Michalis Xenos, Efstratios Georgakarakos, George Kouvelos, Athanasios Giannoukas, Nicos Labropoulos & Miltiadis Matsagkas. (2017) Comparison of physiological and post-endovascular aneurysm repair infrarenal blood flow. Computer Methods in Biomechanics and Biomedical Engineering 20:3, pages 242-249.
Read now
Anastasios Raptis, Michalis Xenos, Stelios Dimas, Athanasios Giannoukas, Nicos Labropoulos, Danny Bluestein & Miltiadis I. Matsagkas. (2016) Effect of macroscale formation of intraluminal thrombus on blood flow in abdominal aortic aneurysms. Computer Methods in Biomechanics and Biomedical Engineering 19:1, pages 84-92.
Read now
R. Antón, C.-Y. Chen, M.-Y. Hung, E.A. Finol & K. Pekkan. (2015) Experimental and computational investigation of the patient-specific abdominal aortic aneurysm pressure field. Computer Methods in Biomechanics and Biomedical Engineering 18:9, pages 981-992.
Read now
Xiaohong Wang & Xiaoyang Li. (2013) A fluid–structure interaction-based numerical investigation on the evolution of stress, strength and rupture potential of an abdominal aortic aneurysm. Computer Methods in Biomechanics and Biomedical Engineering 16:9, pages 1032-1039.
Read now

Articles from other publishers (66)

Xiaochen Wang, Harry J. Carpenter, Mergen H. Ghayesh, Andrei Kotousov, Anthony C. Zander, Marco Amabili & Peter J. Psaltis. (2023) A review on the biomechanical behaviour of the aorta. Journal of the Mechanical Behavior of Biomedical Materials 144, pages 105922.
Crossref
Chen Peng, Wei He, Xingsheng Huang, Jun Ma, Tong Yuan, Yun Shi & Shengzhang Wang. (2023) The study on the impact of AAA wall motion on the hemodynamics based on 4D CT image data. Frontiers in Bioengineering and Biotechnology 11.
Crossref
Onur Mutlu, Huseyin Enes Salman, Hassan Al-Thani, Ayman El-Menyar, Uvais Ahmed Qidwai & Huseyin Cagatay Yalcin. (2023) How does hemodynamics affect rupture tissue mechanics in abdominal aortic aneurysm: Focus on wall shear stress derived parameters, time-averaged wall shear stress, oscillatory shear index, endothelial cell activation potential, and relative residence time. Computers in Biology and Medicine 154, pages 106609.
Crossref
Jianing Gao, Huanhuan Cao, Gaofei Hu, Yufei Wu, Yangkai Xu, Hongtu Cui, Hong S. Lu & Lemin Zheng. (2023) The mechanism and therapy of aortic aneurysms. Signal Transduction and Targeted Therapy 8:1.
Crossref
Alexis Throop, Martina Bukac & Rana Zakerzadeh. (2022) Prediction of wall stress and oxygen flow in patient-specific abdominal aortic aneurysms: the role of intraluminal thrombus. Biomechanics and Modeling in Mechanobiology 21:6, pages 1761-1779.
Crossref
Alexis Throop, Durwash Badr, Michael Durka, Martina Bukač & Rana Zakerzadeh. (2022) Analyzing the Effects of Multi-Layered Porous Intraluminal Thrombus on Oxygen Flow in Abdominal Aortic Aneurysms. Oxygen 2:4, pages 518-536.
Crossref
Paulo Yu & Vibhav Durgesh. (2022) Experimental study of flow structure impact on the fluid parameters in saccular aneurysm models. Experimental Thermal and Fluid Science 138, pages 110675.
Crossref
Saeed Hatefi Ardakani, Peyman Fatemi Dehaghani, Hesam Moslemzadeh & Soheil Mohammadi. (2022) 3D large strain hierarchical multiscale analysis of soft fiber-reinforced tissues: application to a degraded arterial wall. Engineering Computations 39:6, pages 2108-2143.
Crossref
Seungik Baek & Amirhossein Arzani. (2022) Current state-of-the-art and utilities of machine learning for detection, monitoring, growth prediction, rupture risk assessment, and post-surgical management of abdominal aortic aneurysms. Applications in Engineering Science 10, pages 100097.
Crossref
Burton Carbino, Alexander Guy, Michael Durka & Rana Zakerzadeh. (2022) The Effects of Geometric Features of Intraluminal Thrombus on the Vessel Wall Oxygen Deprivation. Frontiers in Bioengineering and Biotechnology 10.
Crossref
Paulo Yu & Vibhav Durgesh. (2022) Comparison of Flow Behavior in Saccular Aneurysm Models Using Proper Orthogonal Decomposition. Fluids 7:4, pages 123.
Crossref
Nimmy Thankom Philip, B.S.V. Patnaik & B.J. Sudhir. (2022) Hemodynamic simulation of abdominal aortic aneurysm on idealised models: Investigation of stress parameters during disease progression. Computer Methods and Programs in Biomedicine 213, pages 106508.
Crossref
David A. Rubenstein, Wei Yin & Mary D. Frame. 2022. Biofluid Mechanics. Biofluid Mechanics 535 571 .
Jiali Tu, Shanlin Qin & Rongliang Chen. (2021) Parallel Numerical Simulation of Blood Flows in Patient-specific Aortic Dissection. Parallel Numerical Simulation of Blood Flows in Patient-specific Aortic Dissection.
Félix Nieto-Palomo, María-Ángeles Pérez-Rueda, Laurentiu-Mihai Lipsa, Carlos Vaquero-Puerta, José-Alberto Vilalta-Alonso, Guillermo Vilalta-Alonso & Eduardo Soudah-Prieto. (2021) Statistical techniques for predicting rupture risk in abdominal aortic aneurysms: A contribution based on bootstrap. Science Progress 104:2, pages 003685042110037.
Crossref
Nimmy Thankom Philip, B. S. V. Patnaik & Sudhir B. J.. (2020) Fluid structure interaction study in model abdominal aortic aneurysms: Influence of shape and wall motion. International Journal for Numerical Methods in Biomedical Engineering 37:3.
Crossref
Stephen J. Haller, Amir F. Azarbal & Sandra Rugonyi. (2020) Predictors of Abdominal Aortic Aneurysm Risks. Bioengineering 7:3, pages 79.
Crossref
Tejas Canchi, Sourav S. Patnaik, Hong N. Nguyen, E. Y. K. Ng, Sriram Narayanan, Satish C. Muluk, Victor De Oliveira & Ender A. Finol. (2020) A Comparative Study of Biomechanical and Geometrical Attributes of Abdominal Aortic Aneurysms in the Asian and Caucasian Populations. Journal of Biomechanical Engineering 142:6.
Crossref
Chi Wei Ong, Ian Wee, Nicholas Syn, Sheryl Ng, Hwa Liang Leo, Arthur Mark Richards & Andrew M.T.L. Choong. (2020) Computational Fluid Dynamics Modeling of Hemodynamic Parameters in the Human Diseased Aorta: A Systematic Review. Annals of Vascular Surgery 63, pages 336-381.
Crossref
Palmier Mickael, Rouer Martin, Pochulu Bruno, Monnot Antoine & Didier Plissonnier. (2019) Rupture of a Totally Occluded Abdominal Aortic Aneurysm. Annals of Vascular Surgery 58, pages 378.e1-378.e3.
Crossref
Martin Guillot, Robert Ascuitto, Nancy Ross-Ascuitto, Kiran Mallula & Ernest Siwik. (2019) Computational fluid dynamics simulations as a complementary study for transcatheter endovascular stent implantation for re-coarctation of the aorta associated with minimal pressure drop: an aneurysmal ductal ampulla with aortic isthmus narrowing. Cardiology in the Young 29:6, pages 768-776.
Crossref
Huseyin Enes Salman, Burcu Ramazanli, Mehmet Metin Yavuz & Huseyin Cagatay Yalcin. (2019) Biomechanical Investigation of Disturbed Hemodynamics-Induced Tissue Degeneration in Abdominal Aortic Aneurysms Using Computational and Experimental Techniques. Frontiers in Bioengineering and Biotechnology 7.
Crossref
Huan N. Do, Ahsan Ijaz, Hamidreza Gharahi, Byron Zambrano, Jonguen Choi, Whal Lee & Seungik Baek. (2019) Prediction of Abdominal Aortic Aneurysm Growth Using Dynamical Gaussian Process Implicit Surface. IEEE Transactions on Biomedical Engineering 66:3, pages 609-622.
Crossref
T. Ahamed, R. A. Peattie, L. Dorfmann & E. M. Cherry Kemmerling. (2018) Pulsatile flow measurements and wall stress distribution in a patient specific abdominal aortic aneurysm phantom. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 98:12, pages 2258-2274.
Crossref
D. Bhagavan, P. Di Achille & J. D. Humphrey. (2018) Strongly Coupled Morphological Features of Aortic Aneurysms Drive Intraluminal Thrombus. Scientific Reports 8:1.
Crossref
Eva L. Leemans, Tineke P. Willems, Cornelis H. Slump, Maarten J. van der Laan & Clark J. Zeebregts. (2018) Additional value of biomechanical indices based on CTa for rupture risk assessment of abdominal aortic aneurysms. PLOS ONE 13:8, pages e0202672.
Crossref
Raja Jayendiran, Bakr Nour & Annie Ruimi. (2018) Computational fluid–structure interaction analysis of blood flow on patient-specific reconstructed aortic anatomy and aneurysm treatment with Dacron graft. Journal of Fluids and Structures 81, pages 693-711.
Crossref
Pinar Ulug, Robert J Hinchliffe, Michael J Sweeting, Manuel Gomes, Matthew T Thompson, Simon G Thompson, Richard J Grieve, Raymond Ashleigh, Roger M Greenhalgh & Janet T Powell. (2018) Strategy of endovascular versus open repair for patients with clinical diagnosis of ruptured abdominal aortic aneurysm: the IMPROVE RCT. Health Technology Assessment 22:31, pages 1-122.
Crossref
Stephen J. Haller, Jeffrey D. Crawford, Katherine M. Courchaine, Colin J. Bohannan, Gregory J. Landry, Gregory L. Moneta, Amir F. Azarbal & Sandra Rugonyi. (2018) Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. Journal of Vascular Surgery 67:4, pages 1051-1058.e1.
Crossref
Christiana Anastasiadou, Sotirios Giannakakis, Anastasios Papapetrou, George Galyfos, Gerasimos Papacharalampous & Chrisostomos Maltezos. (2018) Late Rupture of a Totally Thrombosed Abdominal Aortic Aneurysm: A Case Report and Literature Review. Annals of Vascular Surgery 46, pages 368.e5-368.e8.
Crossref
Mariana Simão, Jorge Ferreira, António C. Tomás, José Fragata & Helena Ramos. (2017) Aorta Ascending Aneurysm Analysis Using CFD Models towards Possible Anomalies. Fluids 2:2, pages 31.
Crossref
M. A. Xenos. (2017) An Euler–Lagrange approach for studying blood flow in an aneurysmal geometry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473:2199, pages 20160774.
Crossref
Shawn M. Neff & Casey S. Okamoto. (2017) Chiropractic Management of a Patient With Thoracic Pain and a Stable Thoracic Aortic Aneurysm: A Case Report. Journal of Chiropractic Medicine 16:1, pages 78-82.
Crossref
Santanu Chandra, Vimalatharmaiyah Gnanaruban, Fabian Riveros, Jose F. Rodriguez & Ender A. Finol. (2016) A Methodology for the Derivation of Unloaded Abdominal Aortic Aneurysm Geometry With Experimental Validation. Journal of Biomechanical Engineering 138:10.
Crossref
R. A. Peattie, E. Golden, R. S. Nomoto, C. M. Margossian, F. Q. Pancheri, E. S. Edgar, M. D. Iafrati & A. Luis Dorfmann. (2016) A Technique for Comparing Wall Pressure Distributions in Steady Flow Through Rigid Versus Flexible Patient-based Abdominal Aortic Aneurysm Phantoms. Experimental Techniques 40:4, pages 1187-1201.
Crossref
Byron A. Zambrano, Hamidreza Gharahi, ChaeYoung Lim, Farhad A. Jaberi, Jongeun Choi, Whal Lee & Seungik Baek. (2015) Association of Intraluminal Thrombus, Hemodynamic Forces, and Abdominal Aortic Aneurysm Expansion Using Longitudinal CT Images. Annals of Biomedical Engineering 44:5, pages 1502-1514.
Crossref
Chris Y. Wu & John E. Rectenwald. (2015) Incidental Discovery of a Chronically Thrombosed Abdominal Aortic Aneurysm: Case Report and Literature Review. Annals of Vascular Surgery 29:5, pages 1018.e1-1018.e4.
Crossref
Jianhua Tong & Gerhard A. Holzapfel. (2015) Structure, Mechanics, and Histology of Intraluminal Thrombi in Abdominal Aortic Aneurysms. Annals of Biomedical Engineering 43:7, pages 1488-1501.
Crossref
Fatma Gulden Simsek & Young W. Kwon. (2015) Investigation of material modeling in fluid–structure interaction analysis of an idealized three-layered abdominal aorta: aneurysm initiation and fully developed aneurysms. Journal of Biological Physics 41:2, pages 173-201.
Crossref
David A. Rubenstein, Wei Yin & Mary D. Frame. 2015. Biofluid Mechanics. Biofluid Mechanics 461 494 .
Michalis Xenos, Nicos Labropoulos, Suraj Rambhia, Yared Alemu, Shmuel Einav, Apostolos Tassiopoulos, Natzi Sakalihasan & Danny Bluestein. (2014) Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid–Structure Interaction Method. Annals of Biomedical Engineering 43:1, pages 139-153.
Crossref
Mehdi Farsad, Byron A. Zambrano & Seungik Baek. 2015. Computational Biomechanics for Medicine. Computational Biomechanics for Medicine 13 23 .
Amirhossein Arzani, Ga-Young Suh, Ronald L. Dalman & Shawn C. Shadden. (2014) A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. American Journal of Physiology-Heart and Circulatory Physiology 307:12, pages H1786-H1795.
Crossref
Florentina Ene, Patrick Delassus & Liam Morris. (2014) The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 228:8, pages 768-780.
Crossref
Maria D. Radu, Alo?s Pfenniger, Lorenz R?ber, Stefano F. de Marchi, Dominik Obrist, Henning Kelb?k, Stephan Windecker, Patrick W. Serruys & Rolf Vogel. (2014) Flow disturbances in stent-related coronary evaginations: a computational fluid-dynamic simulation study. EuroIntervention 10:1, pages 113-123.
Crossref
Jonathan Golledge, Vikram Iyer, Julie Jenkins, Barbara Bradshaw, Oliver Cronin & Philip J. Walker. (2014) Thrombus volume is similar in patients with ruptured and intact abdominal aortic aneurysms. Journal of Vascular Surgery 59:2, pages 315-320.
Crossref
Santanu Chandra, Samarth S. Raut, Anirban Jana, Robert W. Biederman, Mark Doyle, Satish C. Muluk & Ender A. Finol. (2013) Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling. Journal of Biomechanical Engineering 135:8.
Crossref
Eduardo Soudah, E. Y. K. Ng, T. H. Loong, Maurizio Bordone, Uei Pua & Sriram Narayanan. (2013) CFD Modelling of Abdominal Aortic Aneurysm on Hemodynamic Loads Using a Realistic Geometry with CT. Computational and Mathematical Methods in Medicine 2013, pages 1-9.
Crossref
Reena L. Pande & Joshua A. Beckman. 2013. Vascular Medicine: A Companion to Braunwald's Heart Disease. Vascular Medicine: A Companion to Braunwald's Heart Disease 457 470 .
S. De Bock, F. Iannaccone, G. De Santis, M. De Beule, D. Van Loo, D. Devos, F. Vermassen, P. Segers & B. Verhegghe. (2012) Virtual evaluation of stent graft deployment: A validated modeling and simulation study. Journal of the Mechanical Behavior of Biomedical Materials 13, pages 129-139.
Crossref
Malachy J O’Rourke, James P McCullough & Sinead Kelly. (2012) An investigation of the relationship between hemodynamics and thrombus deposition within patient-specific models of abdominal aortic aneurysm. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 226:7, pages 548-564.
Crossref
Efstratios Georgakarakos, George S. Georgiadis, Antonios Xenakis, Konstantinos C. Kapoulas, Miltos K. Lazarides, Adamantios S. Tsangaris & Christos V. Ioannou. (2012) Application of Bioengineering Modalities in Vascular Research: Evaluating the Clinical Gain. Vascular and Endovascular Surgery 46:2, pages 101-108.
Crossref
David A. Rubenstein, Wei Yin & Mary D. Frame. 2012. Biofluid Mechanics. Biofluid Mechanics 349 373 .
Ch. Stamatopoulos, D. S. Mathioulakis, Y. Papaharilaou & A. Katsamouris. (2010) Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model. Experiments in Fluids 50:6, pages 1695-1709.
Crossref
Efstratios Georgakarakos, Christos V. Ioannou, Yannis Papaharilaou, Theodoros Kostas & Asterios N. Katsamouris. (2011) Computational Evaluation of Aortic Aneurysm Rupture Risk: What Have We Learned So Far?. Journal of Endovascular Therapy 18:2, pages 214-225.
Crossref
Abeera Abbas, Rizwan Attia, Alberto Smith & Matthew Waltham. (2011) Can We Predict Abdominal Aortic Aneurysm (AAA) Progression and Rupture by Non-Invasive Imaging?—A Systematic Review. International Journal of Clinical Medicine 02:04, pages 484-499.
Crossref
M. Xenos & D. Bluestein. 2011. Biomechanics and Mechanobiology of Aneurysms. Biomechanics and Mechanobiology of Aneurysms 181 220 .
Barry J. Doyle & Timothy M. McGloughlin. 2011. Biomechanics and Mechanobiology of Aneurysms. Biomechanics and Mechanobiology of Aneurysms 119 138 .
Michalis Xenos, Yared Alemu, Dan Zamfir, Shmuel Einav, John J. Ricotta, Nicos Labropoulos, Apostolos Tassiopoulos & Danny Bluestein. (2010) The effect of angulation in abdominal aortic aneurysms: fluid?structure interaction simulations of idealized geometries. Medical & Biological Engineering & Computing 48:12, pages 1175-1190.
Crossref
Michalis Xenos, Suraj H. Rambhia, Yared Alemu, Shmuel Einav, Nicos Labropoulos, Apostolos Tassiopoulos, John J. Ricotta & Danny Bluestein. (2010) Patient-Based Abdominal Aortic Aneurysm Rupture Risk Prediction with Fluid Structure Interaction Modeling. Annals of Biomedical Engineering 38:11, pages 3323-3337.
Crossref
Avinash Ayyalasomayajula, Jonathan P. Vande Geest & Bruce R. Simon. (2010) Porohyperelastic Finite Element Modeling of Abdominal Aortic Aneurysms. Journal of Biomechanical Engineering 132:10.
Crossref
A. Dorfmann, C. Wilson, E. S. Edgar & R. A. Peattie. (2009) Evaluating patient-specific abdominal aortic aneurysm wall stress based on flow-induced loading. Biomechanics and Modeling in Mechanobiology 9:2, pages 127-139.
Crossref
Morton H. Friedman, Rob Krams & Krishnan B. Chandran. (2010) Flow Interactions with Cells and Tissues: Cardiovascular Flows and Fluid–Structure Interactions. Annals of Biomedical Engineering 38:3, pages 1178-1187.
Crossref
Madhavan L. Raghavan & David A. Vorp. 2011. Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems. Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems 313 341 .
Jonathan Golledge & Paul E Norman. (2009) Pathophysiology of abdominal aortic aneurysm relevant to improvements in patients' management. Current Opinion in Cardiology 24:6, pages 532-538.
Crossref
S.H. Rambhia, M. Xenos & D. Bluestein. (2009) Fluid structure interaction for patient specific risk assessment in ruptured abdominal aortic aneurysms. Fluid structure interaction for patient specific risk assessment in ruptured abdominal aortic aneurysms.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.