418
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Tribological Behavior of Deagglomerated Active Inorganic Nanoparticles for Advanced Lubrication

, , , &
Pages 673-678 | Received 02 Apr 2007, Accepted 25 Jan 2008, Published online: 15 Oct 2008

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

M. Vijayaraj, S. K. Hait, A. K. Harinarain & S. S. V. Ramakumar. (2016) Tribochemical Transformation of Nano TiO2 to Ilmenite on the Surface of Wearing Steel Parts: Antiwear Action of Nano TiO2 as an Additive in Engine Oil. Tribology Transactions 59:3, pages 435-440.
Read now
M. Sgroi, F. Gili, D. Mangherini, I. Lahouij, F. Dassenoy, I. Garcia, I. Odriozola & G. Kraft. (2015) Friction Reduction Benefits in Valve-Train System Using IF-MoS2 Added Engine Oil. Tribology Transactions 58:2, pages 207-214.
Read now
Laura Peña-Parás, Jaime Taha-Tijerina, Andrés García, Demófilo Maldonado, Jesús A. González, David Molina, Eduardo Palacios & Pablo Cantú. (2014) Antiwear and Extreme Pressure Properties of Nanofluids for Industrial Applications. Tribology Transactions 57:6, pages 1072-1076.
Read now
Faraz Niyaghi, Karl R. Haapala, Stacey L. Harper & Michael C. Weismiller. (2014) Stability and Biological Responses of Zinc Oxide Metalworking Nanofluids (ZnO MWnF™) using Dynamic Light Scattering and Zebrafish Assays. Tribology Transactions 57:4, pages 730-739.
Read now

Articles from other publishers (46)

G Kadirgama, A Kumar, M Sandhya, L Samylingam, D Ramasamy, K Kadirgama, H A Mohammed, M Samykano & R Saidur. (2023) Graphene nanoplatelets–cellulose nanocrystals in engine oil for automotive applications. Green Materials 11:2, pages 87-95.
Crossref
S. S. Sanukrishna, S. Reshmi Krishnan & M. Jose Prakash. (2023) Thermal, rheological, and tribological characterization of graphene–polyalkylene glycol nanolubricant for improving the overall efficiency of refrigeration systems. Journal of the Brazilian Society of Mechanical Sciences and Engineering 45:6.
Crossref
Yasser A. Attia & Gamal El-Ghannam. (2023) Surface Modification of β-MnO2 Nanorods as Nanolubricant. Nanoscience & Nanotechnology-Asia 13:2.
Crossref
MV Varalakshmi & V Venugopal Reddy. (2022) An Experimental Investigation on Tribological Behaviour of Polyalphaolefin (PAO4) Oil Modified with Cu/MnS Nanocomposites. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 237:4, pages 954-963.
Crossref
Salil Bapat & Ajay P. Malshe. (2022) Understanding the Role of Directional Texture in Tribofilm Evolution. Journal of Tribology 144:12.
Crossref
Mohammad Jafarian Zenjanab, Siamak Pedrammehr, Mohammad Reza Chalak Qazani & Mohammad Reza Shabgard. (2021) Influence of Cutting Fluid-Based CuO-Nanofluid with Boric Acid-Nanoparticles Additives on Machining Performances of AISI 4340 Tool Steel in High-Speed Turning Operation. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 46:2, pages 335-345.
Crossref
Ankush Raina, Mir Irfan Ul Haq, Ankush Anand & J. Sudhanraj. (2021) Lubrication Characteristics of Oils Containing Nanoadditives: Influencing Parameters, Market Scenario and Advancements. Journal of The Institution of Engineers (India): Series D 102:2, pages 575-587.
Crossref
Karolina Wieszczycka, Katarzyna Staszak, Marta J. Woźniak-Budych, Jagoda Litowczenko, Barbara M. Maciejewska & Stefan Jurga. (2021) Surface functionalization – The way for advanced applications of smart materials. Coordination Chemistry Reviews 436, pages 213846.
Crossref
Changhe Li & Hafiz Muhammad Ali. 2021. Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials. Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials 1052 1079 .
Anurag Singh, Neeraj Verma, T.G. Mamatha, Alok Kumar, Saurabh Singh & Kaushal Kumar. (2021) Properties, functions and applications of commonly used lubricant additives: A review. Materials Today: Proceedings 44, pages 5018-5022.
Crossref
Changhe Li & Hafiz Muhammad Ali. 2020. Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding. Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding 132 159 .
Salil Bapat & Ajay P. Malshe. (2020) Understanding the Fundamentals of the Texture and Tribofilm Evolution. Procedia Manufacturing 48, pages 223-229.
Crossref
S.S. Sanukrishna, Muhammed Shafi, Maneesh Murukan & M. Jose Prakash. (2019) Effect of SiO2 nanoparticles on the heat transfer characteristics of refrigerant and tribological behaviour of lubricant. Powder Technology 356, pages 39-49.
Crossref
Lincong Liu, Ming Zhou, Long Jin, Liangchuan Li, Youtang Mo, Guoshi Su, Xiao Li, Hongwei Zhu & Yu Tian. (2019) Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 7:3, pages 199-216.
Crossref
Ajay Malshe. 2019. CIRP Encyclopedia of Production Engineering. CIRP Encyclopedia of Production Engineering 1260 1267 .
Yosef Jazaa, Tian Lan, Sonal Padalkar & Sriram Sundararajan. (2018) The Effect of Agglomeration Reduction on the Tribological Behavior of WS2 and MoS2 Nanoparticle Additives in the Boundary Lubrication Regime. Lubricants 6:4, pages 106.
Crossref
S.F. Hosseini, M. Emami & M.H. Sadeghi. (2018) An experimental investigation on the effects of minimum quantity nano lubricant application in grinding process of Tungsten carbide. Journal of Manufacturing Processes 35, pages 244-253.
Crossref
S.S. Sanukrishna, S. Vishnu, T.S. Krishnakumar & M. Jose Prakash. (2018) Effect of oxide nanoparticles on the thermal, rheological and tribological behaviours of refrigerant compressor oil: An experimental investigation. International Journal of Refrigeration 90, pages 32-45.
Crossref
Senlin Cui, Biao Hu, Bin Ouyang & Dongdong Zhao. (2018) Thermodynamic assessment of the Mo-S system and its application in thermal decomposition of MoS 2. Thermochimica Acta 660, pages 44-55.
Crossref
Ankush Raina & Ankush Anand. (2018) Lubrication performance of synthetic oil mixed with diamond nanoparticles: Effect of concentration. Materials Today: Proceedings 5:9, pages 20588-20594.
Crossref
Mubashir GulzarMubashir Gulzar. 2018. Tribological Study of Nanoparticles Enriched Bio-based Lubricants for Piston Ring–Cylinder Interaction. Tribological Study of Nanoparticles Enriched Bio-based Lubricants for Piston Ring–Cylinder Interaction 7 61 .
Hongxing Wu, Blake Johnson, Liping Wang, Guangneng Dong, Shuncheng Yang & Junfeng Zhang. (2017) High-efficiency preparation of oil-dispersible MoS2 nanosheets with superior anti-wear property in ultralow concentration. Journal of Nanoparticle Research 19:10.
Crossref
Yusuf S. Dambatta, Ahmed A. D. Sarhan, M. Sayuti & M. Hamdi. (2017) Ultrasonic assisted grinding of advanced materials for biomedical and aerospace applications—a review. The International Journal of Advanced Manufacturing Technology 92:9-12, pages 3825-3858.
Crossref
Prashant Thapliyal & Gananath D. Thakre. (2017) Influence of Cu nanofluids on the rolling contact fatigue life of bearing steel. Engineering Failure Analysis 78, pages 110-121.
Crossref
Cengiz Yegin, Wei Lu, Bassem Kheireddin, Ming Zhang, Peng Li, Younjin Min, Hung-Jue Sue, Mufrettin Murat SariMustafa Akbulut. (2017) The Effect of Nanoparticle Functionalization on Lubrication Performance of Nanofluids Dispersing Silica Nanoparticles in an Ionic Liquid. Journal of Tribology 139:4.
Crossref
Hamid Salimi-Yasar, Saeed Zeinali Heris, Mehdi Shanbedi, Ahmad Amiri & Ali Kameli. (2017) Experimental investigation of thermal properties of cutting fluid using soluble oil-based TiO2 nanofluid. Powder Technology 310, pages 213-220.
Crossref
Hongxing Wu, Liping Wang, Guangneng Dong, Shuncheng Yang, Junfeng Zhang, Bin Zhou & Zhengyi Tang. (2017) Lubrication effectiveness investigation on the friendly capped MoS 2 nanoparticles . Lubrication Science 29:2, pages 115-129.
Crossref
Wenyang Zhang, Salil Bapat, Ajay P. Malshe & K.P. Rajurkar. (2017) Understanding evolution of tribo-chemical interfaces during boundary lubrication in manufacturing. CIRP Annals 66:1, pages 555-558.
Crossref
Shih-Chen Shi, Jhen-Yu Wu, Teng-Feng Huang & Yao-Qing Peng. (2016) Improving the tribological performance of biopolymer coating with MoS2 additive. Surface and Coatings Technology 303, pages 250-255.
Crossref
M.M. Molaie, J. Akbari & M.R. Movahhedy. (2016) Ultrasonic assisted grinding process with minimum quantity lubrication using oil-based nanofluids. Journal of Cleaner Production 129, pages 212-222.
Crossref
M. Gulzar, H. H. Masjuki, M. A. Kalam, M. Varman, N. W. M. Zulkifli, R. A. Mufti & Rehan Zahid. (2016) Tribological performance of nanoparticles as lubricating oil additives. Journal of Nanoparticle Research 18:8.
Crossref
M.S. Najiha, M.M. Rahman & A.R. Yusoff. (2016) Environmental impacts and hazards associated with metal working fluids and recent advances in the sustainable systems: A review. Renewable and Sustainable Energy Reviews 60, pages 1008-1031.
Crossref
Clement Kleinstreuer & Zelin Xu. (2016) Mathematical Modeling and Computer Simulations of Nanofluid Flow with Applications to Cooling and Lubrication. Fluids 1:2, pages 16.
Crossref
A. Sethuramiah & Rajesh Kumar. 2016. Modeling of Chemical Wear. Modeling of Chemical Wear 69 104 .
Ajay Malshe. 2016. CIRP Encyclopedia of Production Engineering. CIRP Encyclopedia of Production Engineering 1 9 .
P Nallasamy, N Saravanakumar, Sumannth Nagendran, EM Suriya & D Yashwant. (2014) Tribological investigations on MoS 2 -based nanolubricant for machine tool slideways . Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 229:5, pages 559-567.
Crossref
Dongkun Zhang, Changhe Li, Dongzhou Jia, Yanbin Zhang & Xiaowei Zhang. (2015) Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding. Chinese Journal of Aeronautics 28:2, pages 570-581.
Crossref
Vlad Bogdan Niste, Hiroyoshi Tanaka, Monica Ratoi & Joichi Sugimura. (2015) WS 2 nanoadditized lubricant for applications affected by hydrogen embrittlement . RSC Advances 5:51, pages 40678-40687.
Crossref
Vinay Jaiswal, Kalyani Kalyani, Rashmi B. Rastogi & Rajesh Kumar. (2014) Tribological studies of some SAPS-free Schiff bases derived from 4-aminoantipyrine and aromatic aldehydes and their synergistic interaction with borate ester. J. Mater. Chem. A 2:27, pages 10424-10434.
Crossref
Vinay Jaiswal, Rashmi B. Rastogi, Rajesh Kumar, Laxman Singh & K. D. Mandal. (2014) Tribological studies of stearic acid-modified CaCu 2.9 Zn 0.1 Ti 4 O 12 nanoparticles as effective zero SAPS antiwear lubricant additives in paraffin oil . J. Mater. Chem. A 2:2, pages 375-386.
Crossref
J A Stewart & D E Spearot. (2013) Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS 2 ) . Modelling and Simulation in Materials Science and Engineering 21:4, pages 045003.
Crossref
Wenyang Zhang, Dmytro Demydov, Muhammad P. Jahan, Kuldeep Mistry, Ali Erdemir & Ajay P. Malshe. (2012) Fundamental understanding of the tribological and thermal behavior of Ag–MoS2 nanoparticle-based multi-component lubricating system. Wear 288, pages 9-16.
Crossref
Parash Kalita, Ajay P. Malshe, S. Arun Kumar, V.G. Yoganath & T. Gurumurthy. (2012) Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. Journal of Manufacturing Processes 14:2, pages 160-166.
Crossref
Gianluca Puliti, Samuel Paolucci & Mihir Sen. (2011) Nanofluids and Their Properties. Applied Mechanics Reviews 64:3.
Crossref
S. Prabhu & B. K. Vinayagam. (2011) Nano surface generation of grinding process using carbon nano tubes. Sadhana 35:6, pages 747-760.
Crossref
Dmytro Demydov, Atanu Adhvaryu, Philip McCluskey & Ajay P. Malshe. 2010. Nanoscale Materials in Chemistry: Environmental Applications. Nanoscale Materials in Chemistry: Environmental Applications 137 163 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.