240
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

The effect of nucleation models on dynamic recrystallization I. Homogeneous stored energy distribution

&
Pages 115-144 | Received 17 Jul 1992, Accepted 06 Jan 1993, Published online: 20 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Xiang Ji & Yabei Shi. (2020) Simulation of the microstructural evolution during dynamic recrystallisation with a modified cellular automaton. Philosophical Magazine Letters 100:3, pages 105-115.
Read now
X. H. Deng, L. W. Zhang & C. X. Yue. (2009) Influence of hot working parameters on dynamic recrystallisation of GCr15 bearing steel. Materials Research Innovations 13:4, pages 436-440.
Read now

Articles from other publishers (41)

A Kalaki, H Vafaeenezhad, D Mirahmadi & J Hirsch. (2023) A computational approach to restoration phenomena during annealing of rolled Cu-2Be: recrystallization, grain growth and abnormal grain growth. Modelling and Simulation in Materials Science and Engineering 31:6, pages 065018.
Crossref
B. Flipon, N. Bozzolo & M. Bernacki. (2022) A simplified intragranular description of dislocation density heterogeneities to improve dynamically recrystallized grain size predictions. Materialia 26, pages 101585.
Crossref
Weining Li, Sheng Li, Xuexiong Li, Dongsheng Xu, Yinghui Shao, Moataz M. Attallah & Khamis Essa. (2022) Crystal plasticity model of induction heating-assisted incremental sheet forming with recrystallisation simulation in cellular automata. The International Journal of Advanced Manufacturing Technology 123:3-4, pages 903-925.
Crossref
Hamed Aghajani Derazkola, Eduardo Garcia, Alberto Murillo-Marrodán & Aintzane Conde Fernandez. (2022) Review on modeling and simulation of dynamic recrystallization of martensitic stainless steels during bulk hot deformation. Journal of Materials Research and Technology 18, pages 2993-3025.
Crossref
. (2022) Comparison of Strength and Competitiveness of Different-Length Carbon Fibres Equipped with Self-Healing Mechanism. Nanosistemi, Nanomateriali, Nanotehnologii 20:1.
Crossref
Xiaoyao Peng, Aditi Bhattacharya, S. Kiana Naghibzadeh, David Kinderlehrer, Robert Suter, Kaushik Dayal & Gregory S. Rohrer. (2022) Comparison of simulated and measured grain volume changes during grain growth. Physical Review Materials 6:3.
Crossref
Fei Chen, Huajia Zhu, Wen Chen, Hengan Ou & Zhenshan Cui. (2021) Multiscale modeling of discontinuous dynamic recrystallization during hot working by coupling multilevel cellular automaton and finite element method. International Journal of Plasticity 145, pages 103064.
Crossref
Sebastian Florez, Karen Alvarado & Marc Bernacki. (2021) A new front-tracking Lagrangian model for the modeling of dynamic and post-dynamic recrystallization. Modelling and Simulation in Materials Science and Engineering 29:3, pages 035004.
Crossref
Seyedeh Marjan Bararpour, Hamed Jamshidi Aval & Roohollah Jamaati. (2021) Cellular automaton modeling of dynamic recrystallization in Al-Mg alloy coating fabricated using the friction surfacing process. Surface and Coatings Technology 407, pages 126784.
Crossref
Parisa Pirhayati & Hamed Jamshidi Aval. (2020) Phase-field microstructure simulation during aluminum alloy friction surfacing. Surface and Coatings Technology 402, pages 126496.
Crossref
Y. Cai, C.Y. Sun, Y.L. Li, S.Y. Hu, N.Y. Zhu, E.I. Barker & L.Y. Qian. (2020) Phase field modeling of discontinuous dynamic recrystallization in hot deformation of magnesium alloys. International Journal of Plasticity 133, pages 102773.
Crossref
D.A. Ruiz Sarrazola, D. Pino Muñoz & M. Bernacki. (2020) A new numerical framework for the full field modeling of dynamic recrystallization in a CPFEM context. Computational Materials Science 179, pages 109645.
Crossref
Xiang Ji & Ren Li. (2019) Simulation of Microstructure Evolution during Static Recrystallization of Ultrafine-Grained Purity Copper. MATERIALS TRANSACTIONS 60:10, pages 2229-2233.
Crossref
Xinxin Sun, Hongwei Li & Mei Zhan. (2019) Full-stage prediction of discontinuous dynamic recrystallization of a titanium alloy through a sub-mesh internal state variables method. Modelling and Simulation in Materials Science and Engineering 27:1, pages 015004.
Crossref
A.D. Tutcuoglu, A. Vidyasagar, K. Bhattacharya & D.M. Kochmann. (2019) Stochastic modeling of discontinuous dynamic recrystallization at finite strains in hcp metals. Journal of the Mechanics and Physics of Solids 122, pages 590-612.
Crossref
H. Kooiker, E. Perdahcıoğlu & A. van den Boogaard. (2018) A Continuum Model for the Effect of Dynamic Recrystallization on the Stress–Strain Response. Materials 11:5, pages 867.
Crossref
Ludovic Maire, Julien Fausty, Marc Bernacki, Nathalie Bozzolo, Pascal De Micheli & Charbel Moussa. (2018) A new topological approach for the mean field modeling of dynamic recrystallization. Materials & Design 146, pages 194-207.
Crossref
Yuanli Chen, Li Jin, Jie Dong, Fenghua Wang, Yangxin Li, Yanjun Li, Hongchen Pan & Xi Nie. (2017) Effects of LPSO/α-Mg interfaces on dynamic recrystallization behavior of Mg96.5Gd2.5Zn1 alloy. Materials Characterization 134, pages 253-259.
Crossref
Ludovic Maire, Benjamin Scholtes, Charbel Moussa, Nathalie Bozzolo, Daniel Pino Muñoz, Amico Settefrati & Marc Bernacki. (2017) Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to phenomenological laws. Materials & Design 133, pages 498-519.
Crossref
Ylva Mellbin, Håkan Hallberg & Matti Ristinmaa. (2017) An extended vertex and crystal plasticity framework for efficient multiscale modeling of polycrystalline materials. International Journal of Solids and Structures 125, pages 150-160.
Crossref
Guowei Zhou, Zihan Li, Dayong Li, Yinghong Peng, Hatem S. Zurob & Peidong Wu. (2017) A polycrystal plasticity based discontinuous dynamic recrystallization simulation method and its application to copper. International Journal of Plasticity 91, pages 48-76.
Crossref
Y Mellbin, H Hallberg & M Ristinmaa. (2016) Recrystallization and texture evolution during hot rolling of copper, studied by a multiscale model combining crystal plasticity and vertex models. Modelling and Simulation in Materials Science and Engineering 24:7, pages 075004.
Crossref
E. Popova, Y. Staraselski, A. Brahme, R.K. Mishra & K. Inal. (2015) Coupled crystal plasticity – Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys. International Journal of Plasticity 66, pages 85-102.
Crossref
Håkan Hallberg, Bob Svendsen, Tobias Kayser & Matti Ristinmaa. (2014) Microstructure evolution during dynamic discontinuous recrystallization in particle-containing Cu. Computational Materials Science 84, pages 327-338.
Crossref
Yan He, Ming Gao, Wen Jiang Feng & Zhi Mei Zhang. (2013) Analysis on Effects of Strain Rate to Dynamic Recrystallization Process of Metals by 2-D CA Model. Advanced Materials Research 788, pages 38-42.
Crossref
Xinli Wang, Wenbin Dai, Chongwei Ma & Xiang Zhao. (2013) Effect of electric current direction on recrystallization rate and texture of a Cu–Zn alloy. Journal of Materials Research 28:10, pages 1378-1385.
Crossref
M.X. Guo & M.P. Wang. (2012) The compression characteristics of particle-containing Cu alloys under different conditions. Materials Science and Engineering: A 556, pages 807-815.
Crossref
J. de Jaeger, D. Solas, T. Baudin, O. Fandeur, J-H. Schmitt & C. Rey. 2012. Superalloys 2012. Superalloys 2012 663 672 .
Ho-Hung Kuo, Minoru Umemoto, Kazuki Sugita, Goro Miyamoto & Tadashi Furuhara. (2012) Model for Predicting Phase Transformation and Yield Strength of Vanadium Microalloyed Carbon Steels. ISIJ International 52:4, pages 669-678.
Crossref
Håkan Hallberg. (2011) Approaches to Modeling of Recrystallization. Metals 1:1, pages 16-48.
Crossref
Håkan Hallberg, Mathias Wallin & Matti Ristinmaa. (2010) Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton. Computational Materials Science 49:1, pages 25-34.
Crossref
Zhaoyang Jin & Zhenshan Cui. (2010) Investigation on strain dependence of dynamic recrystallization behavior using an inverse analysis method. Materials Science and Engineering: A 527:13-14, pages 3111-3119.
Crossref
Zhao-yang JIN, Juan LIU, Zhen-shan CUI & Dong-lai WEI. (2010) Identification of nucleation parameter for cellular automaton model of dynamic recrystallization. Transactions of Nonferrous Metals Society of China 20:3, pages 458-464.
Crossref
M. Kazeminezhad, A. Karimi Taheri & A. Kiet Tieu. (2007) Utilization of the finite element and Monte Carlo model for simulating the recrystallization of inhomogeneous deformation of copper. Computational Materials Science 38:4, pages 765-773.
Crossref
M. Kazeminezhad, A. Karimi Taheri & A. Kiet Tieu. (2006) Computer simulation of the effect of post annealing parameters on the microstructure inhomogeneity of the non-uniformly deformed copper. Journal of Computer-Aided Materials Design 13:1-3, pages 221-232.
Crossref
Masakazu Kobayashi & Yoshimasa Takayama. (2004) Monte Carlo simulation of microstructural evolution using Potts modelPottsモデルによる組織形成のモンテカルロ・シミュレーション. Journal of Japan Institute of Light Metals 54:4, pages 159-165.
Crossref
M Qian & Z.X Guo. (2004) Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel. Materials Science and Engineering: A 365:1-2, pages 180-185.
Crossref
R. Ding & Z.X. Guo. (2002) Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach. Computational Materials Science 23:1-4, pages 209-218.
Crossref
R Ding & Z.X Guo. (2001) Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Materialia 49:16, pages 3163-3175.
Crossref
John H Harding. (1997) Mesoscopic modelling. Current Opinion in Solid State and Materials Science 2:6, pages 728-732.
Crossref
P. Peczak. (1995) A Monte Carlo study of influence of deformation temperature on dynamic recrystallization. Acta Metallurgica et Materialia 43:3, pages 1279-1291.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.