83
Views
69
CrossRef citations to date
0
Altmetric
Original Articles

Computer modelling of three-dimensional cellular pattern growth

, &
Pages 333-357 | Received 13 Jun 1994, Accepted 15 Aug 1994, Published online: 27 Sep 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (8)

P. R. Rios & D. Zöllner. (2018) Critical assessment 30: Grain growth – Unresolved issues. Materials Science and Technology 34:6, pages 629-638.
Read now
G. Couturier , C. Maurice & R. Fortunier . (2003) Three-dimensional finite-element simulation of Zener pinning dynamics . Philosophical Magazine 83:30, pages 3387-3405.
Read now
D. Moldovan, D. Wolf, S.R. Phillpot & A.J. Haslam. (2002) Mesoscopic simulation of two-dimensional grain growth with anisotropic grain-boundary properties. Philosophical Magazine A 82:7, pages 1271-1297.
Read now
F. Wakai, Y. Shinoda, S. Ishihara & A. Domínguez-rodríguez. (2001) Statistics of grain disappearance in three-dimensional normal grain growth. Philosophical Magazine B 81:5, pages 517-524.
Read now
D. Weygand, Y. Bréchet, J. Lépinoux & W. Gust. (1999) Three-dimensional grain growth: A vertex dynamics simulation. Philosophical Magazine B 79:5, pages 703-716.
Read now
D. Weygand, Y. Bréchet & J. Lépinoux. (1998) A vertex dynamics simulation of grain growth in two dimensions. Philosophical Magazine B 78:4, pages 329-352.
Read now
Xinjian Xue, Franco Righetti, Hubert Telley, ThomasM. Liebling & Alain Mocellin. (1997) The laguerre model for grain growth in three dimensions. Philosophical Magazine B 75:4, pages 567-585.
Read now
Hubert Telley, ThomasM. Liebling & Alain Mocellin. (1996) The Laguerre model of grain growth in two dimensions I. Cellular structures viewed as dynamical Laguerre tessellations. Philosophical Magazine B 73:3, pages 395-408.
Read now

Articles from other publishers (61)

Guoye Guan, Xiangyu Kuang, Chao Tang & Lei Zhang. (2023) Comparison between phase-field model and coarse-grained model for characterizing cell-resolved morphological and mechanical properties in a multicellular system. Communications in Nonlinear Science and Numerical Simulation 117, pages 106966.
Crossref
Tao Zhang & J. M. Schwarz. (2022) Topologically-protected interior for three-dimensional confluent cellular collectives. Physical Review Research 4:4.
Crossref
Yos Panagaman Sitompul, Takayuki Aoki, Seiya Watanabe & Tomohiro Takaki. (2022) An ordered active parameter tracking method for efficient multiphase field simulations. Journal of Computational Science 64, pages 101834.
Crossref
Hisao Honda & Tatsuzo NagaiHisao Honda & Tatsuzo Nagai. 2022. Mathematical Models of Cell-Based Morphogenesis. Mathematical Models of Cell-Based Morphogenesis 83 111 .
Thomas Breithaupt, Lars N. Hansen, Srikanth Toppaladoddi & Richard F. Katz. (2021) The role of grain-environment heterogeneity in normal grain growth: A stochastic approach. Acta Materialia 209, pages 116699.
Crossref
Eisuke Miyoshi, Tomohiro Takaki, Munekazu Ohno & Yasushi Shibuta. (2020) Accuracy Evaluation of Phase-field Models for Grain Growth Simulation with Anisotropic Grain Boundary Properties. ISIJ International 60:1, pages 160-167.
Crossref
Eisuke Miyoshi, Tomohiro Takaki, Munekazu Ohno, Yasushi Shibuta, Shinji Sakane, Takashi Shimokawabe & Takayuki Aoki. (2018) Correlation between three-dimensional and cross-sectional characteristics of ideal grain growth: large-scale phase-field simulation study. Journal of Materials Science 53:21, pages 15165-15180.
Crossref
J. B. Allen. (2018) Fourier Spectral Phase Field Simulations of Elastically Anisotropic Heterogeneous Polycrystals. Journal of Engineering Materials and Technology 140:4.
Crossref
Eisuke Miyoshi, Tomohiro Takaki, Yasushi Shibuta & Munekazu Ohno. (2018) Bridging molecular dynamics and phase-field methods for grain growth prediction. Computational Materials Science 152, pages 118-124.
Crossref
Swantje Bargmann, Benjamin Klusemann, Jürgen Markmann, Jan Eike Schnabel, Konrad Schneider, Celal Soyarslan & Jana Wilmers. (2018) Generation of 3D representative volume elements for heterogeneous materials: A review. Progress in Materials Science 96, pages 322-384.
Crossref
Tatsuzo Nagai, Hisao Honda & Masahiko Takemura. (2018) Simulation of Cell Patterning Triggered by Cell Death and Differential Adhesion in Drosophila Wing. Biophysical Journal 114:4, pages 958-967.
Crossref
Ylva Mellbin, Håkan Hallberg & Matti Ristinmaa. (2017) An extended vertex and crystal plasticity framework for efficient multiscale modeling of polycrystalline materials. International Journal of Solids and Structures 125, pages 150-160.
Crossref
Kunok Chang, Long-Qing Chen, Carl E. KrillIIIIII & Nele Moelans. (2017) Effect of strong nonuniformity in grain boundary energy on 3-D grain growth behavior: A phase-field simulation study. Computational Materials Science 127, pages 67-77.
Crossref
. 2017. Recrystallization and Related Annealing Phenomena. Recrystallization and Related Annealing Phenomena 647 681 .
J.B. Allen. 2016. Reference Module in Materials Science and Materials Engineering. Reference Module in Materials Science and Materials Engineering.
Jeremy K. Mason, Emanuel A. Lazar, Robert D. MacPherson & David J. Srolovitz. (2015) Geometric and topological properties of the canonical grain-growth microstructure. Physical Review E 92:6.
Crossref
Y Mellbin, H Hallberg & M Ristinmaa. (2015) A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations. Modelling and Simulation in Materials Science and Engineering 23:4, pages 045011.
Crossref
Yukitaka Ishimoto & Yoshihiro Morishita. (2014) Bubbly vertex dynamics: A dynamical and geometrical model for epithelial tissues with curved cell shapes. Physical Review E 90:5.
Crossref
I.M. McKenna, S.O. Poulsen, E.M. Lauridsen, W. Ludwig & P.W. Voorhees. (2014) Grain growth in four dimensions: A comparison between simulation and experiment. Acta Materialia 78, pages 125-134.
Crossref
Anthony D. Rollett. 2013. Microstructural Design of Advanced Engineering Materials. Microstructural Design of Advanced Engineering Materials 161 186 .
Satoru Okuda, Yasuhiro Inoue, Mototsugu Eiraku, Yoshiki Sasai & Taiji Adachi. (2012) Reversible network reconnection model for simulating large deformation in dynamic tissue morphogenesis. Biomechanics and Modeling in Mechanobiology 12:4, pages 627-644.
Crossref
Teruyuki Tamaki, Kenichi Murakami, Hotaka Homma & Kohsaku Ushioda. (2012) Two-Dimensional Grain Growth Simulation by Local Curvature Multi-Vertex Model. Materials Science Forum 715-716, pages 551-556.
Crossref
Emanuel A. Lazar, Jeremy K. Mason, Robert D. MacPherson & David J. Srolovitz. (2011) A more accurate three-dimensional grain growth algorithm. Acta Materialia 59:17, pages 6837-6847.
Crossref
Joël Lépinoux, Daniel Weygand & Marc Verdier. (2010) Modeling grain growth and related phenomena with vertex dynamics. Comptes Rendus Physique 11:3-4, pages 265-273.
Crossref
Alan P. Sprague, Burton R. Patterson & Suresh Grandhi. (2009) Topological Characteristics of Two-Dimensional Grain Growth-Simulation and Analysis. Metallurgical and Materials Transactions A 41:3, pages 592-602.
Crossref
M Syha & D Weygand. (2010) A generalized vertex dynamics model for grain growth in three dimensions. Modelling and Simulation in Materials Science and Engineering 18:1, pages 015010.
Crossref
Emanuel A. Lazar, Robert D. MacPherson & David J. Srolovitz. (2010) A more accurate two-dimensional grain growth algorithm. Acta Materialia 58:2, pages 364-372.
Crossref
L.A. Barrales Mora, V. Mohles, G. Gottstein & L.S. Shvindlerman. 2009. Fundamentals of Modeling for Metals Processing. Fundamentals of Modeling for Metals Processing 282 296 .
Justina Yang & G. Wayne Brodland. (2009) Estimating Interfacial Tension from the Shape Histories of Cells in Compressed Aggregates: A Computational Study. Annals of Biomedical Engineering 37:5, pages 1019-1027.
Crossref
Xiaoguang Chen & G Wayne Brodland. (2008) Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Physical Biology 5:1, pages 015003.
Crossref
Yoshihiro Suwa, Yoshiyuki Saito & Hidehiro Onodera. (2007) Phase-field simulation of abnormal grain growth due to inverse pinning. Acta Materialia 55:20, pages 6881-6894.
Crossref
L.A. Barrales-Mora, Lasar S. Shvindlerman, Volker Mohles & Günter Gottstein. (2007) The Effect of Grain Boundary Junctions on Grain Microstructure Evolution: 3D Vertex Simulation. Materials Science Forum 558-559, pages 1051-1056.
Crossref
Yoshihiro Suwa, Yoshiyuki Saito & Hidehiro Onodera. (2007) Three-dimensional phase field simulation of the effect of anisotropy in grain-boundary mobility on growth kinetics and morphology of grain structure. Computational Materials Science 40:1, pages 40-50.
Crossref
Denis Viens. (2007) A Three-dimensional Finite Element Model for the Mechanics of Cell-Cell Interactions. Journal of Biomechanical Engineering 129:5, pages 651.
Crossref
Eugene S. Machlin. 2007. An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science. An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science 289 318 .
R.M.C de Almeida, G.L. Thomas & F. Graner. (2006) Universal, statistically scale-invariant regime in 3D cellular systems. Physica A: Statistical Mechanics and its Applications 371:1, pages 67-70.
Crossref
Paulo R. Rios & Martin E. Glicksman. (2006) Topological theory of abnormal grain growth. Acta Materialia 54:19, pages 5313-5321.
Crossref
Gilberto L. Thomas, R. M. C. de Almeida & F. Graner. (2006) Coarsening of three-dimensional grains in crystals, or bubbles in dry foams, tends towards a universal, statistically scale-invariant regime. Physical Review E 74:2.
Crossref
P.R. Rios, T.G. Dalpian, V.S. Brandão, J.A. Castro & A.C.L. Oliveira. (2006) Comparison of analytical grain size distributions with three-dimensional computer simulations and experimental data. Scripta Materialia 54:9, pages 1633-1637.
Crossref
Y. J. Lan, D. Z. Li & Y. Y. Li. (2006) A mesoscale cellular automaton model for curvature-driven grain growth. Metallurgical and Materials Transactions B 37:1, pages 119-129.
Crossref
Yves Bréchet & Christopher Hutchinson. 2006. Solid State Physics - Advances in Research and Applications. Solid State Physics - Advances in Research and Applications 181 287 .
Gregory S. Rohrer. (2005) INFLUENCE OF INTERFACE ANISOTROPY ON GRAIN GROWTH AND COARSENING. Annual Review of Materials Research 35:1, pages 99-126.
Crossref
Stéphane Jurine, Simon Cox & François Graner. (2005) Dry three-dimensional bubbles: growth-rate, scaling state and correlations. Colloids and Surfaces A: Physicochemical and Engineering Aspects 263:1-3, pages 18-26.
Crossref
G. Couturier, R. Doherty, C. Maurice & R. Fortunier. (2005) 3D finite element simulation of the inhibition of normal grain growth by particles. Acta Materialia 53:4, pages 977-989.
Crossref
G. Couturier, Claire Maurice, R. Fortunier, R. Doherty & Julian H. Driver. (2004) Finite Element Simulations of 3D Zener Pinning. Materials Science Forum 467-470, pages 1009-1018.
Crossref
K. M. Döbrich, C. Rau & C. E. KrillIIIIII. (2004) Quantitative characterization of the three-dimensional microstructure of polycrystalline Al-Sn using X-ray microtomography. Metallurgical and Materials Transactions A 35:7, pages 1953-1961.
Crossref
Shigetoshi Ohta. (2004) Simulation of Three Dimensional Cellular Structures by New Triangulation Method for Vertex Model. Journal of the Physical Society of Japan 73:5, pages 1164-1170.
Crossref
Gregory S. Rohrer, David M. Saylor, Bassem El Dasher, Brent L. Adams, Anthony D. Rollett & Paul Wynblatt. (2004) The distribution of internal interfaces in polycrystals. Zeitschrift für Metallkunde 95:4, pages 197-214.
Crossref
Hisao Honda, Masaharu Tanemura & Tatsuzo Nagai. (2004) A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. Journal of Theoretical Biology 226:4, pages 439-453.
Crossref
. 2004. Recrystallization and Related Annealing Phenomena. Recrystallization and Related Annealing Phenomena 557 615 .
Byung-Nam Kim, Keijiro Hiraga & Koji Morita. (2003) Kinetics of Normal Grain Growth Depending on the Size Distribution of Small Grains. MATERIALS TRANSACTIONS 44:11, pages 2239-2244.
Crossref
C.E. Krill III & L.-Q. Chen. (2002) Computer simulation of 3-D grain growth using a phase-field model. Acta Materialia 50:12, pages 3059-3075.
Crossref
F. Wakai, Y. Shinoda, S. Ishihara & A. Domínguez-Rodríguez. (2011) Topological transformation of grains in three-dimensional normal grain growth. Journal of Materials Research 16:7, pages 2136-2142.
Crossref
M.A. Miodownik. 2001. Encyclopedia of Materials: Science and Technology. Encyclopedia of Materials: Science and Technology 3636 3640 .
Fumihiro Wakai, Naoya Enomoto & Hiroshi Ogawa. (2000) Three-dimensional microstructural evolution in ideal grain growth—general statistics. Acta Materialia 48:6, pages 1297-1311.
Crossref
D. Weygand, Y. Bréchet & J. Lépinoux. (1998) Influence of a reduced mobility of triple points on grain growth in two dimensions. Acta Materialia 46:18, pages 6559-6564.
Crossref
R.M.C. de Almeida & JoséC.M. Mombach. (1997) Scaling properties of three-dimensional foams. Physica A: Statistical Mechanics and its Applications 236:3-4, pages 268-278.
Crossref
Harold J Frost & Carl V Thompson. (1996) Computer simulation of grain growth. Current Opinion in Solid State and Materials Science 1:3, pages 361-368.
Crossref
D. Weaire & S. McMurry. 1996. Advances in Research and Applications. Advances in Research and Applications 1 36 .
Kazuhiro Fuchizaki & Kyozi Kawasaki. (1995) Time evolution of three-dimensional cellular systems: Computer modeling based on vertex-type models. Physica A: Statistical Mechanics and its Applications 221:1-3, pages 202-215.
Crossref
X.F Yuan & S.F Edwards. (1995) Flow behaviour of two-dimensional random foams. Journal of Non-Newtonian Fluid Mechanics 60:2-3, pages 335-348.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.