1,037
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study of the effect of turbulence on rate of reactions in the MILD combustion regime

, &
Pages 753-772 | Received 10 Oct 2010, Accepted 04 Feb 2011, Published online: 19 Jul 2011

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Amir Mardani, Amirhossein Azimi & Hamed Karimi Motaalegh Mahalegi. (2022) An Experimental Study on Kerosene Spray Combustion Under Conventional and Hot-Diluted Conditions. Combustion Science and Technology 194:13, pages 2712-2751.
Read now
A. S. Veríssimo, A. M. A. Rocha, P. J. Coelho & M. Costa. (2015) Experimental and Numerical Investigation of the Influence of the Air Preheating Temperature on the Performance of a Small-Scale Mild Combustor. Combustion Science and Technology 187:11, pages 1724-1741.
Read now
M. J. Evans, P. R. Medwell & Z. F. Tian. (2015) Modeling Lifted Jet Flames in a Heated Coflow Using an Optimized Eddy Dissipation Concept Model. Combustion Science and Technology 187:7, pages 1093-1109.
Read now
A. Mardani & S. Tabejamaat. (2012) NOx Formation in H2-CH4 Blended Flame Under MILD Conditions. Combustion Science and Technology 184:7-8, pages 995-1010.
Read now

Articles from other publishers (39)

Di He, Yusong Yu, Xinwu Zhang, Yan Jia & Chaojun Wang. (2023) Reynolds number-based global modification of EDC constants and simulation of a syngas and a piloted CH4/air flames. Energy 284, pages 129284.
Crossref
A K Khodir, S M El-Behery & A H Elaskary. (2023) Numerical study of inlet air conditions on methane flameless combustion characteristics. Journal of Physics: Conference Series 2616:1, pages 012019.
Crossref
M. Srinivasarao, Deayoung Jun, Bok Jik Lee & V. Mahendra Reddy. (2023) Numerical analysis of the enrichment of CH4/H2 in ammonia combustion in a hot co-flow environment. International Journal of Hydrogen Energy.
Crossref
Ashkan Hosseini, Johannes L. T. Hage, Koen Meijer, Erik Offerman & Yongxiang Yang. (2023) On the Importance of Model Selection for CFD Analysis of High Temperature Gas-Solid Reactive Flow; Case Study: Post Combustion Chamber of HIsarna Off-Gas System. Processes 11:3, pages 839.
Crossref
Pino Sabia, Maria Virginia Manna, Giovanni Battista Ariemma, Giancarlo Sorrentino, Raffaele Ragucci & Mara de Joannon. (2023) Novel insights into mild combustion processes through analyses of hysteresis behavior. Proceedings of the Combustion Institute 39:4, pages 4501-4507.
Crossref
Di He, Yusong Yu, Yucheng Kuang & Chaojun Wang. (2022) Analysis of EDC constants for predictions of methane MILD combustion. Fuel 324, pages 124542.
Crossref
Amir Mardani & Aslan Nazari. (2022) Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes. Combustion and Flame 241, pages 111873.
Crossref
Ghobad Bagheri & Matteo Pelucchi. 2022. Fundamentals of Low Emission Flameless Combustion and Its Applications. Fundamentals of Low Emission Flameless Combustion and Its Applications 377 420 .
E. Ebrahimi Fordoei, Kiumars Mazaheri & Amirreza Mohammadpour. (2021) Effects of hydrogen addition to methane on the thermal and ignition delay characteristics of fuel-air, oxygen-enriched and oxy-fuel MILD combustion. International Journal of Hydrogen Energy 46:68, pages 34002-34017.
Crossref
Anshu Sharma, Rodrigo V. Gomez & Ephraim J. Gutmark. (2021) Numerical Investigation of a Swirl Induced Flameless Combustor for Gas Turbine Applications. Numerical Investigation of a Swirl Induced Flameless Combustor for Gas Turbine Applications.
Ashoke De, Gerasimos Sarras & Dirk Roekaerts. 2021. Sustainable Development for Energy, Power, and Propulsion. Sustainable Development for Energy, Power, and Propulsion 439 462 .
Amin Khanlari, Ali Salavati-Zadeh, Mobin Mohammadi, Seyyed Bahram Nourani Najafi & Vahid Esfahanian. 2020. Environmentally-Benign Energy Solutions. Environmentally-Benign Energy Solutions 403 429 .
Michael J. Evans & Paul R. Medwell. (2019) Understanding and Interpreting Laser Diagnostics in Flames: A Review of Experimental Measurement Techniques. Frontiers in Mechanical Engineering 5.
Crossref
Amir Mardani & Andisheh Khanehzar. (2019) Numerical assessment of MILD combustion enhancement through plasma actuator. Energy 183, pages 172-184.
Crossref
Seyed Reza Taghavi, Mohammad Ali Dehnavi & Ali Ghafouri. (2019) Numerical analysis of reactive turbulent flow in the thrust chamber of RD-108 engine rocket. Defence Technology 15:4, pages 565-575.
Crossref
Mohammadreza Baigmohammadi, Sadegh Tabejamaat & Zeinab Javanbakht. (2018) Numerical Study of Methane–Oxygen Premixed Flame Characteristics in Non-adiabatic Cylindrical Meso-Scale Reactors with the Backward-Facing Step. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 43:S1, pages 117-140.
Crossref
Jarief Farabi, Mohammad Ismail & Ebrahim Abtahizadeh. (2018) Simulation of Non-premixed Turbulent Natural Gas Combustion in Delft-Jet-in-Hot-Coflow Burner. Simulation of Non-premixed Turbulent Natural Gas Combustion in Delft-Jet-in-Hot-Coflow Burner.
André A.V. Perpignan, Arvind Gangoli Rao & Dirk J.E.M. Roekaerts. (2018) Flameless combustion and its potential towards gas turbines. Progress in Energy and Combustion Science 69, pages 28-62.
Crossref
F. Chitgarha & A. Mardani. (2018) Assessment of steady and unsteady flamelet models for MILD combustion modeling. International Journal of Hydrogen Energy 43:32, pages 15551-15563.
Crossref
C. Dai, B. Wang, Z. Shu & J. Mi. (2018) Thermal Characteristics of a CH 4 Jet Flame in Hot Oxidant Stream: Dilution Effects of CO 2 and H 2 O . Energy & Fuels 32:7, pages 7943-7958.
Crossref
Ali Salavati-Zadeh, Vahid Esfahanian, Seyyed Bahram Nourani Najafi, Hossein Saeed & Mobin Mohammadi. (2018) Kinetic simulation of flameless burners with methane/hydrogen blended fuel: Effects of molecular diffusion and Schmidt number. International Journal of Hydrogen Energy 43:11, pages 5972-5983.
Crossref
C. Dai, Z. Shu, P. Li & J. Mi. (2018) Combustion Characteristics of a Methane Jet Flame in Hot Oxidant Coflow Diluted by H 2 O versus the Case by N 2 . Energy & Fuels 32:1, pages 875-888.
Crossref
Ashoke De. 2018. Modeling and Simulation of Turbulent Combustion. Modeling and Simulation of Turbulent Combustion 397 427 .
M.J. Evans, A. Chinnici, P.R. Medwell & J. Ye. (2017) Ignition features of methane and ethylene fuel-blends in hot and diluted coflows. Fuel 203, pages 279-289.
Crossref
Yang Liu, Jia Cheng, Chun Zou, Lei Cai, Yizhuo He & Chuguang Zheng. (2017) Experimental and numerical study on the CO formation mechanism in methane MILD combustion without preheated air. Fuel 192, pages 140-148.
Crossref
Amir Mardani. (2017) Optimization of the Eddy Dissipation Concept (EDC) model for turbulence-chemistry interactions under hot diluted combustion of CH4/H2. Fuel 191, pages 114-129.
Crossref
Amir Mardani & Alireza Fazlollahi-Ghomshi. (2016) Numerical Investigation of a Double-Swirled Gas Turbine Model Combustor Using a RANS Approach with Different Turbulence–Chemistry Interaction Models. Energy & Fuels 30:8, pages 6764-6776.
Crossref
Xiaowen Deng, Yan Xiong, Hong Yin & Qingshui Gao. (2016) Numerical Study of the Effect of Nozzle Configurations on Characteristics of MILD Combustion for Gas Turbine Application. Journal of Energy Resources Technology 138:4.
Crossref
Xudong Jin & Yuegui Zhou. (2015) Numerical Analysis on Microscopic Characteristics of Pulverized Coal Moderate and Intense Low-Oxygen Dilution Combustion. Energy & Fuels 29:5, pages 3456-3466.
Crossref
Ashoke De & Akshay Dongre. (2014) Assessment of Turbulence-Chemistry Interaction Models in MILD Combustion Regime. Flow, Turbulence and Combustion 94:2, pages 439-478.
Crossref
Akshay Dongre, Ashoke De & Rakesh Yadav. (2014) Numerical Investigation of MILD Combustion Using Multi-Environment Eulerian Probability Density Function Modeling. International Journal of Spray and Combustion Dynamics 6:4, pages 357-386.
Crossref
G. Sarras, Y. Mahmoudi, L. D. Arteaga Mendez, E. H van Veen, M. J. Tummers & D. J. E. M. Roekaerts. (2014) Modeling of Turbulent Natural Gas and Biogas Flames of the Delft Jet-in-Hot-Coflow Burner: Effects of Coflow Temperature, Fuel Temperature and Fuel Composition on the Flame Lift-Off Height. Flow, Turbulence and Combustion 93:4, pages 607-635.
Crossref
P. Li, F. Wang, J. Mi, B. B. Dally & Z. Mei. (2014) MILD Combustion under Different Premixing Patterns and Characteristics of the Reaction Regime. Energy & Fuels 28:3, pages 2211-2226.
Crossref
Paul R. Medwell, David L. Blunck & Bassam B. Dally. (2014) The role of precursors on the stabilisation of jet flames issuing into a hot environment. Combustion and Flame 161:2, pages 465-474.
Crossref
Amir Mardani, Sadegh Tabejamaat & Shahla Hassanpour. (2013) Numerical study of CO and CO2 formation in CH4/H2 blended flame under MILD condition. Combustion and Flame 160:9, pages 1636-1649.
Crossref
M. Graça, A. Duarte, P.J. Coelho & M. Costa. (2013) Numerical simulation of a reversed flow small-scale combustor. Fuel Processing Technology 107, pages 126-137.
Crossref
S.M. Mir Najafizadeh, M.T. Sadeghi & R. Sotudeh-Gharebagh. (2013) Analysis of autoignition of a turbulent lifted H2/N2 jet flame issuing into a vitiated coflow. International Journal of Hydrogen Energy 38:5, pages 2510-2522.
Crossref
Xianfeng Chen, Yin Zhang & Ying Zhang. (2012) Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors. Energies 5:10, pages 4132-4146.
Crossref
Paul R. Medwell & Bassam B. Dally. (2012) Experimental Observation of Lifted Flames in a Heated and Diluted Coflow. Energy & Fuels 26:9, pages 5519-5527.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.