318
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics

, , &
Pages 889-907 | Published online: 23 Nov 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Lin Zhang, Jianhan Liang, Mingbo Sun, Hongbo Wang & Yue Yang. (2018) An energy-consistency-preserving large eddy simulation-scalar filtered mass density function (LES-SFMDF) method for high-speed flows. Combustion Theory and Modelling 22:1, pages 1-37.
Read now

Articles from other publishers (44)

Aziz D. Ilgun, Rodney O. Fox, Ehsan Madadi-Kandjani & Alberto Passalacqua. (2023) A computational-fluid-dynamics model for particle-size evolution in the presence of turbulent mixing. Chemical Engineering Science 279, pages 118961.
Crossref
Alessandro Parente, Matteo Savarese & Saurabh Sharma. 2023. Hydrogen for Future Thermal Engines. Hydrogen for Future Thermal Engines 269 328 .
Namsu Kim & Young Tae Guahk. (2022) Numerical modeling for local flame structure and pollutant formation in biodiesel and n-Dodecane spray jet flames. Fuel 321, pages 124151.
Crossref
M. Steinhausen, T. Zirwes, F. Ferraro, S. Popp, F. Zhang, H. Bockhorn & C. Hasse. (2022) Turbulent flame-wall interaction of premixed flames using Quadrature-based Moment Methods (QbMM) and tabulated chemistry: An a priori analysis. International Journal of Heat and Fluid Flow 93, pages 108913.
Crossref
Haifeng Wang. (2021) Fully consistent Eulerian Monte Carlo fields method for solving probability density function transport equations in turbulence modeling. Physics of Fluids 33:1.
Crossref
Martin Pollack, Federica Ferraro, Johannes Janicka & Christian Hasse. (2021) Evaluation of Quadrature-based Moment Methods in turbulent premixed combustion. Proceedings of the Combustion Institute 38:2, pages 2877-2884.
Crossref
Rodney O. Fox. (2020) Effect of the conditional scalar dissipation rate in the conditional moment closure. Physics of Fluids 32:11.
Crossref
A.D. Ilgun, A. Passalacqua & R.O. Fox. (2020) A quadrature-based conditional moment closure for mixing-sensitive reactions. Chemical Engineering Science 226, pages 115831.
Crossref
Namsu Kim & Yongmo Kim. (2020) Large eddy simulation based multi-environment PDF modelling for mixing processes of transcritical and supercritical cryogenic nitrogen jets. Cryogenics 110, pages 103134.
Crossref
Xiaoxia Duan, Xin Feng, Zai-Sha Mao & Chao Yang. (2019) Numerical simulation of reactive mixing process in a stirred reactor with the DQMOM-IEM model. Chemical Engineering Journal 360, pages 1177-1187.
Crossref
Jaehyeon Kim, Namsu Kim & Yongmo Kim. (2019) Multi-environment PDF modeling for turbulent piloted premixed jet flames. Proceedings of the Combustion Institute 37:2, pages 2573-2581.
Crossref
Ahmed Amine Larbi, Abdelhamid Bounif, Mohamed Senouci, Iskender Gökalp & Mohamed Bouzit. (2018) RANS modelling of a lifted hydrogen flame using eulerian/lagrangian approaches with transported PDF method. Energy 164, pages 1242-1256.
Crossref
Haifeng Wang, Pei Zhang & Tejas Pant. (2018) Consistency and convergence of Eulerian Monte Carlo field method for solving transported probability density function equation in turbulence modeling. Physics of Fluids 30:11.
Crossref
Hyunggeun Ji, Minjun Kwon, Sewon Kim & Yongmo Kim. (2018) Numerical modeling for multiple combustion modes in turbulent partially premixed jet flames. Journal of Mechanical Science and Technology 32:11, pages 5511-5519.
Crossref
Namsu Kim, Kiyoung Jung & Yongmo Kim. (2018) Multi-environment PDF modeling for n-dodecane spray combustion processes using tabulated chemistry. Combustion and Flame 192, pages 205-220.
Crossref
Ahmed Amine Larbi, Abdelhamid Bounif & Mohamed Bouzit. (2018) Modeling and numerical study of H 2 /N 2 jet flame in vitiated co-flow using Eulerian PDF transport approach . Mechanics & Industry 19:5, pages 504.
Crossref
Ashoke De. 2018. Modeling and Simulation of Turbulent Combustion. Modeling and Simulation of Turbulent Combustion 397 427 .
Hyunggeun Ji, Namsu Kim & Yongmo Kim. (2017) FGM-based non-adiabatic multi-environment PDF modeling for MILD combustion processes with the strong flow reversal. Journal of Mechanical Science and Technology 31:12, pages 6059-6068.
Crossref
Namsu Kim & Yongmo Kim. (2017) Multi-environment probability density function approach for turbulent partially-premixed methane/air flame with inhomogeneous inlets. Combustion and Flame 182, pages 190-205.
Crossref
Wei Zhao. (2017) Large-eddy simulation of piloted diffusion flames using multi-environment probability density function models. Proceedings of the Combustion Institute 36:2, pages 1705-1712.
Crossref
Mohammad Alaghemandi & Jason R. Green. (2016) Reactive symbol sequences for a model of hydrogen combustion. Physical Chemistry Chemical Physics 18:4, pages 2810-2817.
Crossref
Jeongwon Lee, Sangtae Jeon & Yongmo Kim. (2015) Multi-environment probability density function approach for turbulent CH4/H2 flames under the MILD combustion condition. Combustion and Flame 162:4, pages 1464-1476.
Crossref
Ashoke De & Akshay Dongre. (2014) Assessment of Turbulence-Chemistry Interaction Models in MILD Combustion Regime. Flow, Turbulence and Combustion 94:2, pages 439-478.
Crossref
Akshay Dongre, Ashoke De & Rakesh Yadav. (2014) Numerical Investigation of MILD Combustion Using Multi-Environment Eulerian Probability Density Function Modeling. International Journal of Spray and Combustion Dynamics 6:4, pages 357-386.
Crossref
Rakesh Yadav, Abhijit Kushari & Ashoke De. (2014) Modeling of turbulent lifted flames in vitiated co-flow using multi environment Eulerian PDF transport approach. International Journal of Heat and Mass Transfer 77, pages 230-246.
Crossref
Rakesh Yadav, Abhijit Kushari, Vinayak Eswaran & Atul K. Verma. (2014) A Detailed Validation Study of Multi-Environment Eulerian Probability Density Function Transport Method for Modeling Turbulent Nonpremixed Combustion. Journal of Engineering for Gas Turbines and Power 136:8.
Crossref
Yongzhe Zhang. (2014) Numerical Simulation of a Scramjet using a Storage/Retrieval Chemistry Scheme. Numerical Simulation of a Scramjet using a Storage/Retrieval Chemistry Scheme.
Rodney O. Fox. 2014. Stochastic Methods in Fluid Mechanics. Stochastic Methods in Fluid Mechanics 87 136 .
Xing Xing Li, Chun Hai Yi, Bo Lun Yang, Yong Zhang, Chang Gui Men, Gen Liang He & Hong Dong Xu. (2013) Numerical Simulation of the Multi-Component Slurry Gasification with the Non-Premixed Combustion Model. Advanced Materials Research 704, pages 326-331.
Crossref
Rakesh Yadav, Abhijit Kushari, Vinayak Eswaran & Atul K. Verma. (2013) A numerical investigation of the Eulerian PDF transport approach for modeling of turbulent non-premixed pilot stabilized flames. Combustion and Flame 160:3, pages 618-634.
Crossref
Jeongwon Lee & Yongmo Kim. (2012) DQMOM based PDF transport modeling for turbulent lifted nitrogen-diluted hydrogen jet flame with autoignition. International Journal of Hydrogen Energy 37:23, pages 18498-18508.
Crossref
Pratik Donde, Heeseok Koo & Venkat Raman. (2012) A multivariate quadrature based moment method for LES based modeling of supersonic combustion. Journal of Computational Physics 231:17, pages 5805-5821.
Crossref
Shaukat Ali, Alexander Vikhansky & Terese Løvås. (2011) Direct Quadrature Conditional Moment Closure for Modelling of Turbulent Combustion. Flow, Turbulence and Combustion 87:2-3, pages 493-509.
Crossref
Jethro Akroyd, Alastair J. Smith, Raphael Shirley, Laurence R. McGlashan & Markus Kraft. (2011) A coupled CFD-population balance approach for nanoparticle synthesis in turbulent reacting flows. Chemical Engineering Science 66:17, pages 3792-3805.
Crossref
I Dhuchakallaya & A P Watkins. (2011) Numerical modelling of diesel spray auto-ignition and combustion. International Journal of Engine Research 12:2, pages 169-180.
Crossref
W. Zhao, C. Zhang & C. Chen. (2011) Large eddy simulation of bluff-body stabilized flames using a multi-environment filtered density function model. Proceedings of the Combustion Institute 33:1, pages 1347-1353.
Crossref
D. C. Haworth & S. B. Pope. 2011. Turbulent Combustion Modeling. Turbulent Combustion Modeling 119 142 .
Jethro Akroyd, Alastair J. Smith, Laurence R. McGlashan & Markus Kraft. (2010) Comparison of the stochastic fields method and DQMoM-IEM as turbulent reaction closures. Chemical Engineering Science 65:20, pages 5429-5441.
Crossref
I. Dhuchakallaya & A.P. Watkins. (2010) Development and application of the drop number size moment modelling to spray combustion simulations. Applied Thermal Engineering 30:10, pages 1215-1224.
Crossref
D.C. Haworth. (2010) Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science 36:2, pages 168-259.
Crossref
I. Dhuchakallaya & A.P. Watkins. (2010) Application of spray combustion simulation in DI diesel engine. Applied Energy 87:4, pages 1427-1432.
Crossref
Jethro Akroyd, Alastair J. Smith, Laurence R. McGlashan & Markus Kraft. (2010) Numerical investigation of DQMoM-IEM as a turbulent reaction closure. Chemical Engineering Science 65:6, pages 1915-1924.
Crossref
Daniel E. Rosner. (2009) Spray Combustor Design/Performance: Chemical Engineering Contributions and the Emergence of an “Interacting Population-Balance” Perspective. Industrial & Engineering Chemistry Research 48:14, pages 6453-6464.
Crossref
Liuyan Lu & Stephen B. Pope. (2009) An improved algorithm for in situ adaptive tabulation. Journal of Computational Physics 228:2, pages 361-386.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.