171
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of NO in turbulent diffusion flames using Eulerian particle flamelet model

&
Pages 905-927 | Received 10 Jul 2007, Published online: 26 Sep 2008

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Krishna Kant Agarwal & R.V. Ravikrishna. (2012) Validation of a Modified Eddy Dissipation Concept Model for Stationary and Nonstationary Turbulent Diffusion Flames. Combustion Science and Technology 184:2, pages 151-164.
Read now

Articles from other publishers (22)

Qiaonan Zhao, Xuemin Liu, Anyao Jiao, Hongtao Xu, Feng Liu & Xiaowei Liao. (2024) A simplified mechanism of hydrogen addition to methane combustion for the pollutant emission characteristics of a gas-fired boiler. International Journal of Hydrogen Energy 49, pages 1376-1390.
Crossref
Amir A. Beige & Amir Mardani. (2023) An investigation on flame structure and NOx formation in a gas turbine model combustor using large eddy simulation. Physics of Fluids 35:7.
Crossref
Hejitian Pan, Sajie Geng, Huan Yang, Guohong Zhang, Hao Bian & Yinhe Liu. (2023) Influence of H2 blending on NOx production in natural gas combustion: Mechanism comparison and reaction routes. International Journal of Hydrogen Energy 48:2, pages 784-797.
Crossref
Rafał Buczyński & Ronald Kim. (2022) On optimization of the coke oven twin-heating flue design providing a substantial reduction of NOx emissions Part I: General description, validation of the models and interpretation of the results. Fuel 323, pages 124194.
Crossref
Huanhuan Xu, Fengshan Liu, Zhiqiang Wang, Xiaohan Ren, Juan Chen, Qiang Li & Zilin Zhu. (2021) A Detailed Numerical Study of NOx Kinetics in Counterflow Methane Diffusion Flames: Effects of Fuel-Side versus Oxidizer-Side Dilution. Journal of Combustion 2021, pages 1-15.
Crossref
Victoria B. Stephens & David O. Lignell. (2021) One-dimensional turbulence (ODT): Computationally efficient modeling and simulation of turbulent flows. SoftwareX 13, pages 100641.
Crossref
Ghufran Ali, Tingyao Zhang, Wendong Wu & Yuegui Zhou. (2020) Effect of hydrogen addition on NOx formation mechanism and pathways in MILD combustion of H2-rich low calorific value fuels. International Journal of Hydrogen Energy 45:15, pages 9200-9210.
Crossref
Fan Hu, Pengfei Li, Kai Wang, Wenhao Li, Junjun Guo, Lu Liu & Zhaohui Liu. (2020) Evaluation, development, and application of a new skeletal mechanism for fuel-NO formation under air and oxy-fuel combustion. Fuel Processing Technology 199, pages 106256.
Crossref
Salvatore Iavarone, Marianna Cafiero, Marco Ferrarotti, Francesco Contino & Alessandro Parente. (2019) A multiscale combustion model formulation for NO predictions in hydrogen enriched jet flames. International Journal of Hydrogen Energy 44:41, pages 23436-23457.
Crossref
A. Cody Nunno & Michael E. Mueller. (2019) Manifold assumptions in modeling radiation heat losses in turbulent nonpremixed combustion. Proceedings of the Combustion Institute 37:2, pages 2223-2230.
Crossref
David O. Lignell, Victoria B. Lansinger, Juan Medina, Marten Klein, Alan R. Kerstein, Heiko Schmidt, Marco Fistler & Michael Oevermann. (2018) One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application. Theoretical and Computational Fluid Dynamics 32:4, pages 495-520.
Crossref
Fan Hu, Pengfei Li, Junjun Guo, Feifei Wang, Kai Wang, Xudong Jiang, Zhaohui Liu & Chuguang Zheng. (2018) Optimal Equivalence Ratio to Minimize NO Emission during Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Fuels 32:4, pages 4478-4492.
Crossref
Rohit Saini, Swetha Prakash, Ashoke De & Rakesh Yadav. (2018) Investigation of NOx in piloted stabilized methane-air diffusion flames using finite-rate and infinitely-fast chemistry based combustion models. Thermal Science and Engineering Progress 5, pages 144-157.
Crossref
André A. V. Perpignan, Mathijs G. Talboom, Yeshayahou Levy & Arvind Gangoli Rao. (2018) Emission Modeling of an Interturbine Burner Based on Flameless Combustion. Energy & Fuels 32:1, pages 822-838.
Crossref
J. Ventosa-Molina, O. Lehmkuhl, C. D. Pérez-Segarra & A. Oliva. (2017) Large Eddy Simulation of aTurbulent Diffusion Flame: Some Aspects of Subgrid Modelling Consistency. Flow, Turbulence and Combustion 99:1, pages 209-238.
Crossref
Khadidja Safer, Fouzi Tabet & Meriem Safer. (2016) A numerical investigation of structure and NO emissions of turbulent syngas diffusion flame in counter-flow configuration. International Journal of Hydrogen Energy 41:4, pages 3208-3221.
Crossref
Babak Kashir, Sadegh Tabejamaat & Nafiseh Jalalatian. (2015) The impact of hydrogen enrichment and bluff-body lip thickness on characteristics of blended propane/hydrogen bluff-body stabilized turbulent diffusion flames. Energy Conversion and Management 103, pages 1-13.
Crossref
P. Li, F. Wang, J. Mi, B.B. Dally, Z. Mei, J. Zhang & A. Parente. (2014) Mechanisms of NO formation in MILD combustion of CH 4 /H 2 fuel blends. International Journal of Hydrogen Energy 39:33, pages 19187-19203.
Crossref
Xuan Gao, Fei Duan, Seng Chuan Lim & Mee Sin Yip. (2013) NOx formation in hydrogen–methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions. Energy 59, pages 559-569.
Crossref
B.T. Zoller, J.M. Allegrini, U. Maas & P. Jenny. (2011) PDF model for NO calculations with radiation and consistent NO–NO2 chemistry in non-premixed turbulent flames. Combustion and Flame 158:8, pages 1591-1601.
Crossref
K.W. Lee & D.H. Choi. (2009) Numerical study on high-temperature diluted air combustion for the turbulent jet flame in crossflow using an unsteady flamelet model. International Journal of Heat and Mass Transfer 52:25-26, pages 5740-5750.
Crossref
K.W. Lee & D.H. Choi. (2009) Analysis of NO formation in high temperature diluted air combustion in a coaxial jet flame using an unsteady flamelet model. International Journal of Heat and Mass Transfer 52:5-6, pages 1412-1420.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.