155
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Atomic force microscopy study on microstructural changes by 'training' in Fe-Mn-Si-based shape memory alloys

, , &
Pages 2875-2897 | Published online: 15 Nov 2010

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Y. Yamaguchi , S. Miyazaki, S. Kumai & A. Sato . (2006) Strengthening of a FeMnSi-based shape memory alloy by dispersion of χ-phase domains. Philosophical Magazine 86:27, pages 4319-4340.
Read now

Articles from other publishers (50)

Eva Marinopoulou & Konstantinos Katakalos. (2022) Thermomechanical Fatigue Testing on Fe-Mn-Si Shape Memory Alloys in Prestress Conditions. Materials 16:1, pages 237.
Crossref
M.J. Xue, X.Y. Xue, H. Zhang, J.S. Li & M.J. Lai. (2022) Re-examination of the effect of reducing annealing twin boundary density on the shape memory effect in Fe-Mn-Si-based alloys. Journal of Alloys and Compounds 907, pages 164505.
Crossref
B. He, J.F. Wan, S.S. Cui, N.L. Chen & Y.H. Rong. (2020) Evolution and formation mechanism of surface nanorelief associated with martensite twin colony (MTC) in Mn-based alloy. Materials & Design 193, pages 108800.
Crossref
Ming-Ming Pan, Xiao-Ming Zhang, Ding Zhou, R.D.K. Misra, Peng Chen & Xiang-Bin Su. (2020) On the significance of C and Co on shape memory performance of Fe–Mn–Si–Cr–Ni shape memory alloy. Materials Science and Engineering: A 786, pages 139412.
Crossref
Isidro Esquivel, María Florencia Giordana & Ana Velia Druker. (2019) Effect of heat treatment on the microstructure and shape memory behaviour of Fe-Mn-Si-Ni-Cr alloys. Materials Characterization 155, pages 109811.
Crossref
Shushan Cui, Jianfeng Wan, Jihua Zhang, Yonghua Rong & Nailu Chen. (2018) Crystallography and consequence of the cubic-tetragonal-orthorhombic multi-step martensitic transformations in MnNi alloys. Materials Research Express 5:11, pages 116519.
Crossref
M.J. Lai, Y.J. Li, L. Lillpopp, D. Ponge, S. Will & D. Raabe. (2018) On the origin of the improvement of shape memory effect by precipitating VC in Fe–Mn–Si-based shape memory alloys. Acta Materialia 155, pages 222-235.
Crossref
A. Druker, P. Vermaut & J. Malarría. (2018) The shape recovery conditions for Fe–Mn–Si alloys: An interplay between martensitic transformation and plasticity. Materials Characterization 139, pages 319-327.
Crossref
Huabei Peng, Jie Chen, Yongning Wang & Yuhua Wen. (2018) Key Factors Achieving Large Recovery Strains in Polycrystalline Fe-Mn-Si-Based Shape Memory Alloys: A Review. Advanced Engineering Materials 20:3, pages 1700741.
Crossref
Huabei Peng, Gaixia Wang, Shanling Wang, Jie Chen, Ian MacLaren & Yuhua Wen. (2018) Key criterion for achieving giant recovery strains in polycrystalline Fe-Mn-Si based shape memory alloys. Materials Science and Engineering: A 712, pages 37-49.
Crossref
Piyas Chowdhury, Demircan Canadinc & Huseyin Sehitoglu. (2017) On deformation behavior of Fe-Mn based structural alloys. Materials Science and Engineering: R: Reports 122, pages 1-28.
Crossref
Koji Hagihara & Takayoshi Nakano. (2017) Experimental clarification of the cyclic deformation mechanisms of β-type Ti–Nb–Ta–Zr-alloy single crystals developed for the single-crystalline implant. International Journal of Plasticity 98, pages 27-44.
Crossref
Huabei Peng, Pan Huang, Tiannan Zhou, Shanling Wang & Yuhua Wen. (2017) Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy. Metallurgical and Materials Transactions A 48:5, pages 2132-2139.
Crossref
H.R. Koohdar, M. Nili-Ahmadabadi, M. Habibi-Parsa, H.R. Jafarian, H. Ghasemi-Nanesa & H. Shirazi. (2016) Observation of pseudoelasticity in a cold rolled Fe–Ni–Mn martensitic steel. Materials Science and Engineering: A 658, pages 86-90.
Crossref
Yuan Feng, Liu Chuan, Geng Zheng, Cui Yan-Guang, Wang Lin, Wan Jian-Feng, Zhang Ji-Hua & Rong Yong-Hua. (2015) Study on surface relief related to reverse martensitic transformation in Mn-based high-temperature antiferromagnetic shape memory alloy. Acta Physica Sinica 64:1, pages 016801.
Crossref
Y.H. Wen, H.B. Peng, D. Raabe, I. Gutierrez-Urrutia, J. Chen & Y.Y. Du. (2014) Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries. Nature Communications 5:1.
Crossref
L. Wang, Y. G. Cui, J. F. Wan, Y. H. Rong, J. H. Zhang, X. Jin & M. M. Cai. (2013) In situ atomic force microscope study of high-temperature untwinning surface relief in Mn-Fe-Cu antiferromagnetic shape memory alloy . Applied Physics Letters 102:18.
Crossref
Bikas C. Maji & Madangopal Krishnan. (2013) Effect of copper addition on the microstructure and shape recovery of Fe–Mn–Si–Cr–Ni shape memory alloys. Materials Science and Engineering: A 570, pages 13-26.
Crossref
Xiaohua Min, Takahiro Sawaguchi, Xin Zhang & Kaneaki Tsuzaki. (2012) Reasons for incomplete shape recovery in polycrystalline Fe–Mn–Si shape memory alloys. Scripta Materialia 67:1, pages 37-40.
Crossref
S.Z. Yang, N. Li, Y.H. Wen & H.B. Peng. (2011) Effect of ageing temperature after tensile pre deformation on shape memory effect and precipitation process of Cr23C6 carbide in a FeMnSiCrNiC alloy. Materials Science and Engineering: A 529, pages 201-206.
Crossref
X.H. Min, T. Sawaguchi, K. Ogawa, T. Maruyama, F.X. Yin & K. Tsuzaki. (2011) Shape memory effect in Fe–Mn–Ni–Si–C alloys with low Mn contents. Materials Science and Engineering: A 528:15, pages 5251-5258.
Crossref
Huabei Peng, Yuhua Wen, Gang Liu, Chaoping Wang & Ning Li. (2011) A Role of α′ Martensite Introduced by Thermo-Mechanical Treatment in Improving Shape Memory Effect of an Fe-Mn-Si-Cr-Ni Alloy. Advanced Engineering Materials 13:5, pages 388-394.
Crossref
M. Koyama, T. Sawaguchi & K. Tsuzaki. (2011) Si content dependence on shape memory and tensile properties in Fe?Mn?Si?C alloys. Materials Science and Engineering: A 528:6, pages 2882-2888.
Crossref
Motomichi Koyama, Takahiro Sawaguchi, Kazuyuki Ogawa, Takehiko Kikuchi & Masato Murakami. (2010) Continuous Transition of Deformation Modes in Fe-30Mn-5Si-1Al Alloy. MATERIALS TRANSACTIONS 51:7, pages 1194-1199.
Crossref
H.B. Peng, Y.H. Wen, B.B. Ye & N. Li. (2009) Influence of ageing after pre-deformation on shape memory effect in a FeMnSiCrNiC alloy with 13wt.% Cr content. Materials Science and Engineering: A 504:1-2, pages 36-39.
Crossref
Motomichi Koyama, Takahiro Sawaguchi, Kazuyuki Ogawa, Takehiko Kikuchi & Masato Murakami. (2009) Continuous Transition of Deformation Mode in Fe-30Mn-5Si-1Al Alloy. Journal of the Japan Institute of Metals 73:3, pages 174-179.
Crossref
Takahiro Sawaguchi, Leandru-Gheorghe Bujoreanu, Takehiko Kikuchi, Kazuyuki Ogawa, Motomichi Koyama & Masato Murakami. (2008) Mechanism of reversible transformation-induced plasticity of Fe–Mn–Si shape memory alloys. Scripta Materialia 59:8, pages 826-829.
Crossref
Yoshimi Watanabe, Hisashi Sato, Yoichi Nishino & Ick-Soo Kim. (2008) Training effect on damping capacity in Fe–20mass% Mn binary alloy. Materials Science and Engineering: A 490:1-2, pages 138-145.
Crossref
A. Baruj & H.E. Troiani. (2008) The effect of pre-rolling Fe?Mn?Si-based shape memory alloys: Mechanical properties and transmission electron microcopy examination. Materials Science and Engineering: A 481-482, pages 574-577.
Crossref
Y.H. Wen, L.R. Xiong, N. Li & W. Zhang. (2008) Remarkable improvement of shape memory effect in an Fe?Mn?Si?Cr?Ni?C alloy through controlling precipitation direction of Cr23C6. Materials Science and Engineering: A 474:1-2, pages 60-63.
Crossref
Y.D. Wang, E.W. Huang, Y. Ren, Z.H. Nie, G. Wang, Y.D. Liu, J.N. Deng, H. Choo, P.K. Liaw, D.E. Brown & L. Zuo. (2008) In situ high-energy X-ray studies of magnetic-field-induced phase transition in a ferromagnetic shape memory Ni–Co–Mn–In alloy. Acta Materialia 56:4, pages 913-923.
Crossref
Takahiro Sawaguchi, Leandru-Gheorghe Bujoreanu, Takehiko Kikuchi, Kazuyuki Ogawa & Fuxing Yin. (2008) Effects of Nb and C in Solution and in NbC Form on the Transformation-related Internal Friction of Fe–17Mn (mass%) Alloys. ISIJ International 48:1, pages 99-106.
Crossref
Motomichi Koyama, Masato Murakami, Kazuyuki Ogawa, Takehiko Kikuchi & Takahiro Sawaguchi. (2008) AFM Observation of Microstructural Changes in Fe-Mn-Si-Al Shape Memory Alloy. MATERIALS TRANSACTIONS 49:4, pages 812-816.
Crossref
Y.H. Wen, W. Zhang, N. Li, H.B. Peng & L.R. Xiong. (2007) Principle and realization of improving shape memory effect in Fe?Mn?Si?Cr?Ni alloy through aligned precipitations of second-phase particles. Acta Materialia 55:19, pages 6526-6534.
Crossref
Nicole Stanford & Druce P. Dunne. (2007) Martensite/particle interactions and the shape memory effect in an Fe–Mn–Si-based alloy. Journal of Materials Science 42:12, pages 4334-4343.
Crossref
Y.H. Wen, W.L. Xie, N. Li & D. Li. (2007) Remarkable difference between effects of carbon contents on recovery strain and recovery stress in Fe?Mn?Si?Cr?Ni?C alloys. Materials Science and Engineering: A 457:1-2, pages 334-337.
Crossref
Motomichi Koyama, Masato Murakami, Kazuyuki Ogawa, Takehiko Kikuchi & Takahiro Sawaguchi. (2007) Influence of Al on Shape Memory Effect and Twinning Induced Plasticity of Fe-Mn-Si-Al System Alloy. MATERIALS TRANSACTIONS 48:10, pages 2729-2734.
Crossref
K. Ogawa, T. Sawaguchi, T. Kikuchi & S. Kajiwara. (2007) Mechanism of the Improvement of Shape Memory Effects in NbC Containing Fe-Mn-Si-Based Shape Memory Alloys. MATERIALS TRANSACTIONS 48:4, pages 869-877.
Crossref
Motomichi Koyama, Masato Murakami, Kazuyuki Ogawa, Takehiko Kikuchi & Takahiro Sawaguchi. (2007) Atomic Force Microscopic Observation of Microstructural Changes in Fe-Mn-Si-Al Shape Memory Alloy. Journal of the Japan Institute of Metals 71:9, pages 672-677.
Crossref
Motomichi Koyama, Masato Murakami, Kazuyuki Ogawa, Takehiko Kikuchi & Takahiro Sawaguchi. (2007) Influence of Al on Shape Memory Effect and Twinning Induced Plasticity of Fe-Mn-Si-Al System Alloy. Journal of the Japan Institute of Metals 71:6, pages 502-507.
Crossref
Z. Dong, T. Sawaguchi, T. Kikuchi, F. Yin, K. Ogawa, P. Sahu & S. Kajiwara. (2006) Internal friction study on fcc/hcp martensitic transformations in thermomechanically treated Fe?28Mn?6Si?5Cr?0.53Nb?0.06C (mass%) alloys. Materials Science and Engineering: A 442:1-2, pages 404-408.
Crossref
Y. Tanaka, Y. Himuro, T. Omori, Y. Sutou, R. Kainuma & K. Ishida. (2006) Martensitic transformation and shape memory effect in ausaged Fe–Ni–Si–Co alloys. Materials Science and Engineering: A 438-440, pages 1030-1035.
Crossref
Takahiro Sawaguchi, Takehiko Kikuchi, Fuxing Yin & Setsuo Kajiwara. (2006) Internal friction of an Fe?28Mn?6Si?5Cr?0.5NbC shape memory alloy. Materials Science and Engineering: A 438-440, pages 796-799.
Crossref
N. Stanford & D.P. Dunne. (2006) Thermo-mechanical processing and the shape memory effect in an Fe–Mn–Si-based shape memory alloy. Materials Science and Engineering: A 422:1-2, pages 352-359.
Crossref
Akikazu Sato, Hiroshi Kubo & Tadakatsu Maruyama. (2006) Mechanical Properties of Fe–Mn–Si Based SMA and the Application. MATERIALS TRANSACTIONS 47:3, pages 571-579.
Crossref
Zhizhong Dong, Takehiko Kikuchi, Takahiro Sawaguchi & Setsuo Kajiwara. (2006) Martensite Transformation and Shape Recovery in Pre-Deformed Fe-15Mn-5Si-9Cr-5Ni-(0.5–1.5) NbC Alloys. MATERIALS TRANSACTIONS 47:5, pages 1328-1331.
Crossref
Kazuyuki Ogawa, Takahiro Sawaguchi, Takehiko Kikuchi & Setuo Kajiwara. (2006) Mechanism of Improvement of Shape Memory Effect in NbC Containing Fe-Mn-Si-Based Shape Memory Alloys. Journal of the Japan Institute of Metals 70:1, pages 25-33.
Crossref
T Sawaguchi, T Kikuchi & S Kajiwara. (2005) The pseudoelastic behavior of Fe?Mn?Si-based shape memory alloys containing Nb and C. Smart Materials and Structures 14:5, pages S317-S322.
Crossref
Z.Z. Dong, S. Kajiwara, T. Kikuchi & T. Sawaguchi. (2005) Effect of pre-deformation at room temperature on shape memory properties of stainless type Fe–15Mn–5Si–9Cr–5Ni–(0.5–1.5)NbC alloys. Acta Materialia 53:15, pages 4009-4018.
Crossref
A Baruj, T Kikuchi, S Kajiwara & N Shinya. (2004) Improvement of shape memory properties of NbC containing Fe–Mn–Si based shape memory alloys by simple thermomechanical treatments. Materials Science and Engineering: A 378:1-2, pages 333-336.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.