277
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Monte Carlo simulation of phosphorus diffusion in α-iron via the vacancy mechanism

Pages 1539-1555 | Received 16 Nov 2004, Accepted 19 Dec 2004, Published online: 21 Feb 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

F. Djurabekova, L. Malerba, R.C. Pasianot, P. Olsson & K. Nordlund. (2010) Kinetics versus thermodynamics in materials modeling: The case of the di-vacancy in iron. Philosophical Magazine 90:19, pages 2585-2595.
Read now
A. V. Barashev & A. C. Arokiam. (2006) Monte Carlo modelling of Cu atom diffusion in α-Fe via the vacancy mechanism. Philosophical Magazine Letters 86:5, pages 321-332.
Read now

Articles from other publishers (23)

Jing Luo, Ziran Liu & Dongyang Li. (2023) Electronic and strain-elimination effects of solute–vacancy interaction in molybdenum. Journal of Applied Physics 133:12.
Crossref
Chao Zhang, Yang Sun, Hai-Di Wang, Feng Zhang, Tong-Qi Wen, Kai-Ming Ho & Cai-Zhuang Wang. (2021) Crystallization of the P 3 Sn 4 Phase upon Cooling P 2 Sn 5 Liquid by Molecular Dynamics Simulation Using a Machine Learning Interatomic Potential . The Journal of Physical Chemistry C 125:5, pages 3127-3133.
Crossref
O. Tissot, G. Sakr, C. Pareige & J. Henry. (2020) Effect of irradiation on nanoprecipitation in EM10 alloy - Comparison with Eurofer97. Journal of Nuclear Materials 531, pages 151995.
Crossref
B. Gómez-Ferrer, C. Heintze & C. Pareige. (2019) On the role of Ni, Si and P on the nanostructural evolution of FeCr alloys under irradiation. Journal of Nuclear Materials 517, pages 35-44.
Crossref
Ken-ichi Ebihara & Tomoaki Suzudo. (2018) Atomistic simulation of phosphorus segregation to Σ3 (111) symmetrical tilt grain boundary in α -iron . Modelling and Simulation in Materials Science and Engineering 26:6, pages 065005.
Crossref
Mina Mohammadzadeh & Roghayeh Mohammadzadeh. (2017) Effect of grain size on apparent diffusivity in nanocrystal α-iron by atomistic simulation. Computational Materials Science 129, pages 239-246.
Crossref
Ken-ichi EbiharaTomoaki SuzudoMasatake Yamaguchi. (2017) Modeling of Phosphorus Transport by Interstitial Dumbbell in α−Iron Using First-Principles-Based Kinetic Monte Carlo. MATERIALS TRANSACTIONS 58:1, pages 26-32.
Crossref
J. Henry & S.A. Maloy. 2017. Structural Materials for Generation IV Nuclear Reactors. Structural Materials for Generation IV Nuclear Reactors 329 355 .
O. I. Gorbatov, Yu. N. Gornostyrev, P. A. Korzhavyi & A. V. Ruban. (2017) Ab initio modeling of decomposition in iron based alloys. Physics of Metals and Metallography 117:13, pages 1293-1327.
Crossref
Tomoaki Suzudo, Masatake Yamaguchi & Akira Hasegawa. (2015) Migration of rhenium and osmium interstitials in tungsten. Journal of Nuclear Materials 467, pages 418-423.
Crossref
A.P. Druzhkov, S.E. Danilov, D.A. Perminov & V.L. Arbuzov. (2015) Effect of phosphorus on vacancy-type defect behaviour in electron-irradiated Ni studied by positron annihilation. Journal of Nuclear Materials 457, pages 48-53.
Crossref
C. Pareige, V. Kuksenko & P. Pareige. (2015) Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe–Cr alloys – Comparison to neutron irradiation. Journal of Nuclear Materials 456, pages 471-476.
Crossref
Wen-Li Yan, Hong-Bo Zhou, Shuo Jin, Ying Zhang & Guang-Hong Lu. (2015) Dissolution energetics and its strain dependence of transition metal alloying elements in tungsten. Journal of Nuclear Materials 456, pages 260-265.
Crossref
Yu-Wei You, Xiang-Shan Kong, Xue-Bang Wu, Wei Liu, C.S. Liu, Q.F. Fang, J.L. Chen, G.-N. Luo & Zhiguang Wang. (2014) Interactions of solute (3 p , 4 p , 5 p and 6 p ) with solute, vacancy and divacancy in bcc Fe. Journal of Nuclear Materials 455:1-3, pages 68-72.
Crossref
Ken-ichi Ebihara, Tomoaki Suzudo, Masatake Yamaguchi & Yutaka Nishiyama. (2013) Introduction of vacancy drag effect to first-principles-based rate theory model for irradiation-induced grain-boundary phosphorus segregation. Journal of Nuclear Materials 440:1-3, pages 627-632.
Crossref
C.S. Becquart & C. Domain. (2012) Solute–point defect interactions in bcc systems: Focus on first principles modelling in W and RPV steels. Current Opinion in Solid State and Materials Science 16:3, pages 115-125.
Crossref
M.H.F. Sluiter. 2012. Phase Transformations in Steels. Phase Transformations in Steels 365 404 .
M. Nastar & F. Soisson. 2012. Comprehensive Nuclear Materials. Comprehensive Nuclear Materials 471 496 .
Maylise Nastar. (2008) Diffusion and coupled fluxes in concentrated alloys under irradiation: a self-consistent mean-field approach. Comptes Rendus Physique 9:3-4, pages 362-369.
Crossref
E. Meslin, Chu-Chun Fu, A. Barbu, F. Gao & F. Willaime. (2007) Theoretical study of atomic transport via interstitials in dilute alloys . Physical Review B 75:9.
Crossref
F.G. Djurabekova, L. Malerba, C. Domain & C.S. Becquart. (2007) Stability and mobility of small vacancy and copper-vacancy clusters in bcc-Fe: An atomistic kinetic Monte Carlo study. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 255:1, pages 47-51.
Crossref
Frédéric Soisson. (2006) Kinetic Monte Carlo simulations of radiation induced segregation and precipitation. Journal of Nuclear Materials 349:3, pages 235-250.
Crossref
Stewart M. J. Gordon, S. D. Kenny & Roger Smith. (2005) Diffusion dynamics of defects in Fe and Fe-P systems. Physical Review B 72:21.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.