329
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Cyclic deformation and fatigue cracking behaviour of polycrystalline Cu, Cu–10 wt% Zn and Cu–32 wt% Zn

, , &
Pages 2487-2503 | Received 16 Apr 2008, Accepted 26 Jul 2008, Published online: 26 Sep 2008

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

P. Zhang, S. Qu, Q.Q. Duan, S.D. Wu, S.X. Li, Z.G. Wang & Z.F. Zhang. (2011) Low-cycle fatigue-cracking mechanisms in fcc crystalline materials. Philosophical Magazine 91:2, pages 229-249.
Read now
Y.Z. Tian, Z.F. Zhang & Z.G. Wang. (2009) Cyclic deformation and fatigue cracking behaviors of Cu–28wt%Ag binary alloy. Philosophical Magazine 89:21, pages 1715-1730.
Read now

Articles from other publishers (21)

Wenbin Liu, Yangyang Cheng, Haonan Sui, Jiaqi Fu & Huiling Duan. (2023) Microstructure-based intergranular fatigue crack nucleation model: Dislocation transmission versus grain boundary cracking. Journal of the Mechanics and Physics of Solids 173, pages 105233.
Crossref
Linlin Li, Zhenjun Zhang, Peng Zhang & Zhefeng Zhang. (2023) A review on the fatigue cracking of twin boundaries: Crystallographic orientation and stacking fault energy. Progress in Materials Science 131, pages 101011.
Crossref
Xiaodi Wang, Wenliang Bai, Zhe Zhang, Zhengbin Wang & Xuechong Ren. (2022) Enhanced fatigue resistance of a face-centered-cubic single-phase Al0.3CoCrFeNi high-entropy alloy through planar deformation characteristic. Materials Science and Engineering: A, pages 144499.
Crossref
Di Wan, Anette Brocks Hagen, Luigi Mario Viespoli, Audun Johanson, Filippo Berto & Antonio Alvaro. (2022) In-situ tensile and fatigue behavior of electrical grade Cu alloy for subsea cables. Materials Science and Engineering: A 835, pages 142654.
Crossref
Nataliya Starostina, Ann McGuire & Richard Rowan. (2021) Evaluation of Dihedral Angle Twin Boundaries in Cu10 wt%Zn Alloy Using Atomic Force Microscopy. Microscopy and Microanalysis 27:4, pages 705-711.
Crossref
Chaolin Tan, Youxiang Chew, Guijun Bi, Di Wang, Wenyou Ma, Yongqiang Yang & Kesong Zhou. (2021) Additive manufacturing of steel–copper functionally graded material with ultrahigh bonding strength. Journal of Materials Science & Technology 72, pages 217-222.
Crossref
Elżbieta Gadalińska, Maciej Malicki, Bartosz Madejski & Grzegorz Socha. 2020. ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing. ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing 528 538 .
Zhefeng Zhang, Linlin Li, Zhenjun Zhang & Peng Zhang. (2017) Twin boundary: Controllable interface to fatigue cracking. Journal of Materials Science & Technology 33:7, pages 603-606.
Crossref
L.L. Li, Z.J. Zhang, P. Zhang, J. Tan, J.B. Yang & Z.F. Zhang. (2017) Deformation behaviors of Cu bicrystals with an inclined twin boundary at multiple scales. Journal of Materials Science & Technology 33:7, pages 698-702.
Crossref
Zhi-chao Ma, Hong-wei Zhao, Shuai Lu & Hong-bing Cheng. (2015) Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy. Journal of Central South University 22:7, pages 2440-2445.
Crossref
L.L. Li, Z.J. Zhang, P. Zhang, J.B. Yang & Z.F. Zhang. (2015) Shear fatigue cracking of twin boundary and grain boundary without dislocation impingement. Scripta Materialia 100, pages 28-31.
Crossref
L.L. Li, P. Zhang, Z.J. Zhang, H.F. Zhou, S.X. Qu, J.B. Yang & Z.F. Zhang. (2014) Strain localization and fatigue cracking behaviors of Cu bicrystal with an inclined twin boundary. Acta Materialia 73, pages 167-176.
Crossref
L.L. Li, Z.J. Zhang, P Zhang, Z.G. Wang & Z.F. Zhang. (2014) Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary. Nature Communications 5:1.
Crossref
Shenghu Chen, Mingjiu Zhao & Lijian Rong. (2013) Hydrogen-induced cracking behavior of twin boundary in γ′ phase strengthened Fe–Ni based austenitic alloys. Materials Science and Engineering: A 561, pages 7-12.
Crossref
L.L. Li, P. Zhang, Z.J. Zhang & Z.F. Zhang. (2013) Effect of crystallographic orientation and grain boundary character on fatigue cracking behaviors of coaxial copper bicrystals. Acta Materialia 61:2, pages 425-438.
Crossref
P. Zhang, Z.J. Zhang, L.L. Li & Z.F. Zhang. (2012) Twin boundary: Stronger or weaker interface to resist fatigue cracking?. Scripta Materialia 66:11, pages 854-859.
Crossref
J. Man, T. Vystavěl, A. Weidner, I. Kuběna, M. Petrenec, T. Kruml & J. Polák. (2012) Study of cyclic strain localization and fatigue crack initiation using FIB technique. International Journal of Fatigue 39, pages 44-53.
Crossref
Z.J. Zhang, P. Zhang, L.L. Li & Z.F. Zhang. (2012) Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy. Acta Materialia 60:6-7, pages 3113-3127.
Crossref
L.L. Li, Z.J. Zhang, P. Zhang & Z.F. Zhang. (2011) Higher fatigue cracking resistance of twin boundaries than grain boundaries in Cu bicrystals. Scripta Materialia 65:6, pages 505-508.
Crossref
Xianfeng Ma, Hui-Ji Shi & Jialin Gu. (2010) In-situ scanning electron microscopy studies of small fatigue crack growth in recrystallized layer of a directionally solidified superalloy. Materials Letters 64:19, pages 2080-2083.
Crossref
J. Man, M. Valtr, A. Weidner, M. Petrenec, K. Obrtlík & J. Polák. (2010) AFM study of surface relief evolution in 316L steel fatigued at low and high temperatures. Procedia Engineering 2:1, pages 1625-1633.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.