486
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Atomic scale modeling of {110} twist grain boundaries in α-iron: Structure and energy properties

, , &
Pages 991-1000 | Received 24 Apr 2009, Accepted 29 Jun 2009, Published online: 30 Mar 2010

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Y. Yamamoto & A. Ferrara. (2022) Evolution of precipitation particles with respect to grain boundary energy in Grade 91 steel during creep exposure. Materials at High Temperatures 39:6, pages 480-486.
Read now
J.B. Yang, Z.J. Zhang & Z.F. Zhang. (2015) Quantitative understanding of anomalous slip in Mo. Philosophical Magazine 95:19, pages 2026-2045.
Read now

Articles from other publishers (25)

Zhen-Jun Zhang, Shuang-Li Lu, Jin-Bo Yang & Zhe-Feng Zhang. (2022) The criterion of anomalous slip at 0 K in body centered cubic metals. Tungsten 5:1, pages 160-168.
Crossref
Hadi Ghaffarian & Dongchan Jang. (2023) Anisotropic deformation mechanism of {110} hexagonal dislocation networks in BCC Iron. Scripta Materialia 223, pages 115097.
Crossref
Zheyuan Xing, Haidong Fan & Guozheng Kang. (2022) Interaction between crack and grain boundary in magnesium. Engineering Fracture Mechanics, pages 108866.
Crossref
Rainer Backofen, Marco Salvalaglio & Axel Voigt. (2022) Magnetic APFC modeling and the influence of magneto-structural interactions on grain shrinkage. Modelling and Simulation in Materials Science and Engineering 30:6, pages 064003.
Crossref
Yu Yamamoto & Matteo Ortolani. (2021) Micrograin structure evolution associated with grain boundary characteristics in grade 91 steel during long-term creep exposure. Materials Science and Engineering: A 826, pages 141993.
Crossref
K.Q. Li, Z.J. Zhang, J.X. Yan, J.B. Yang & Z.F. Zhang. (2020) Mechanism transition of cross slip with stress and temperature in face-centered cubic metals. Journal of Materials Science & Technology 57, pages 159-171.
Crossref
Yuri Osetsky & David Rodney. 2020. Comprehensive Nuclear Materials. Comprehensive Nuclear Materials 663 688 .
Z.Y. Xia, Z.J. Zhang, J.X. Yan, J.B. Yang & Z.F. Zhang. (2019) General yield behaviors of the {1 1 0} hexagonal dislocation networks in body centered cubic metal molybdenum. Computational Materials Science 170, pages 109116.
Crossref
Fang-Biao Li, Guang Ran, Ning Gao, Shang-Quan Zhao & Ning Li. (2019) Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics*. Chinese Physics B 28:8, pages 085203.
Crossref
A. Vattré, N. Abdolrahim, S.S. Navale & M.J. Demkowicz. (2019) The relaxed structure of intrinsic dislocation networks in semicoherent interfaces: predictions from anisotropic elasticity theory and comparison with atomistic simulations. Extreme Mechanics Letters 28, pages 50-57.
Crossref
Ya-Xin Feng, Jia-Xiang Shang & Sheng-Jian Qin. (2019) Tensile response of (1 1 0) twist grain boundaries in tungsten: A molecular dynamics study. Computational Materials Science 159, pages 265-272.
Crossref
Jin-Yu Zhang, Yipeng Gao, Yunzhi Wang & Wen-Zheng Zhang. (2019) A generalized O-element approach for analyzing interface structures. Acta Materialia 165, pages 508-519.
Crossref
Di Qiu, Pengyang Zhao, Chen Shen, Weijie Lu, Di Zhang, Matous Mrovec & Yunzhi Wang. (2019) Predicting grain boundary structure and energy in BCC metals by integrated atomistic and phase-field modeling. Acta Materialia 164, pages 799-809.
Crossref
Ke-Qiang Li, Zhen-Jun Zhang, Lin-Lin Li, Peng Zhang, Jin-Bo Yang & Zhe-Feng Zhang. (2018) Effective Stacking Fault Energy in Face-Centered Cubic Metals. Acta Metallurgica Sinica (English Letters) 31:8, pages 873-877.
Crossref
Marco Salvalaglio, Rainer Backofen, K. R. Elder & Axel Voigt. (2018) Defects at grain boundaries: A coarse-grained, three-dimensional description by the amplitude expansion of the phase-field crystal model. Physical Review Materials 2:5.
Crossref
Akinori Yamanaka, Kevin McReynolds & Peter W. Voorhees. (2017) Phase field crystal simulation of grain boundary motion, grain rotation and dislocation reactions in a BCC bicrystal. Acta Materialia 133, pages 160-171.
Crossref
Ya-Xin Feng, Jia-Xiang Shang & Guang-Hong Lu. (2017) Migration and nucleation of helium atoms at (110) twist grain boundaries in tungsten. Journal of Nuclear Materials 487, pages 200-209.
Crossref
K.Q. Li, Z.J. Zhang, L.L. Li, P. Zhang, J.B. Yang & Z.F. Zhang. (2016) The dissociation behavior of dislocation arrays in face centered cubic metals. Computational Materials Science 124, pages 384-389.
Crossref
Zeng-Hui Liu, Ya-Xin Feng & Jia-Xiang Shang. (2016) Characterizing twist grain boundaries in BCC Nb by molecular simulation: Structure and shear deformation. Applied Surface Science 370, pages 19-24.
Crossref
Ya-Xin Feng, Jia-Xiang Shang, Zeng-Hui Liu & Guang-Hong Lu. (2015) The energy and structure of (1 1 0) twist grain boundary in tungsten. Applied Surface Science 357, pages 262-267.
Crossref
Fu-Zhi Dai & Wen-Zheng Zhang. (2015) An automatic and simple method for specifying dislocation features in atomistic simulations. Computer Physics Communications 188, pages 103-109.
Crossref
J.B. Yang, Z.F. Zhang, Y.N. Osetsky & R.E. Stoller. (2015) Using a scalar parameter to trace dislocation evolution in atomistic modeling. Computational Materials Science 96, pages 85-89.
Crossref
N. Naveen Kumar, E. Martinez, B. K. Dutta, G. K. Dey & A. Caro. (2013) Nodal effects in -iron dislocation mobility in the presence of helium bubbles . Physical Review B 87:5.
Crossref
J.B. Yang, Y.N. Osetsky, R.E. Stoller, Y. Nagai & M. Hasegawa. (2012) The effect of twist angle on anisotropic mobility of {1 1 0} hexagonal dislocation networks in α-iron. Scripta Materialia 66:10, pages 761-764.
Crossref
I. Toda-Caraballo, P.D. Bristowe & C. Capdevila. (2012) A molecular dynamics study of grain boundary free energies, migration mechanisms and mobilities in a bcc Fe–20Cr alloy. Acta Materialia 60:3, pages 1116-1128.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.