356
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

The non-degenerate core structure of a ½⟨111⟩ screw dislocation in bcc transition metals modelled using Finnis–Sinclair potentials: The necessary and sufficient conditions

, , , &
Pages 3235-3243 | Received 27 May 2009, Accepted 10 Aug 2009, Published online: 01 Dec 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

D. Terentyev, A. Bakaev, D. Van Neck & E. E. Zhurkin. (2016) Glide of dislocations in <1 1 1>{3 2 1} slip system: an atomistic study. Philosophical Magazine 96:1, pages 71-83.
Read now
Erin Hayward, Chaitanya Deo, Blas P. Uberuaga & Carlos N. Tomé. (2012) The interaction of a screw dislocation with point defects in bcc iron. Philosophical Magazine 92:22, pages 2759-2778.
Read now
P.A. Gordon, T. Neeraj & M.I. Mendelev. (2011) Screw dislocation mobility in BCC Metals: a refined potential description for α-Fe. Philosophical Magazine 91:30, pages 3931-3945.
Read now
Alfred Seeger. (2010) Dislocation relaxation and alloy softening of bcc alloys. Philosophical Magazine Letters 90:10, pages 699-706.
Read now
Mark R. Gilbert & Sergei L. Dudarev. (2010) Ab initio multi-string Frenkel–Kontorova model for a b = a/2[111] screw dislocation in bcc iron. Philosophical Magazine 90:7-8, pages 1035-1061.
Read now

Articles from other publishers (22)

Bajrang Sharma, Ying Shi Teh, Babak Sadigh, Sebastien Hamel, Vasily Bulatov & Amit Samanta. (2023) Development of an interatomic potential for the W–Ta system. Computational Materials Science 230, pages 112486.
Crossref
Fenglin Deng, Hongyu Wu, Ri He, Peijun Yang & Zhicheng Zhong. (2023) Large-scale atomistic simulation of dislocation core structure in face-centered cubic metal with Deep Potential method. Computational Materials Science 218, pages 111941.
Crossref
Sri Sadgun R. Pulagam & Amlan Dutta. (2022) Peierls–Nabarro modeling of twinning dislocations in fcc metals. Computational Materials Science 206, pages 111269.
Crossref
Yangchun Chen, Xichuan Liao, Ning Gao, Wangyu Hu, Fei Gao & Huiqiu Deng. (2020) Interatomic potentials of W–V and W–Mo binary systems for point defects studies. Journal of Nuclear Materials 531, pages 152020.
Crossref
Max Boleininger & Sergei L. Dudarev. (2019) Continuum model for the core of a straight mixed dislocation. Physical Review Materials 3:9.
Crossref
Luis Casillas-Trujillo, Andrew S. Ervin, Liubin Xu, Alexander Barashev & Haixuan Xu. (2018) Dynamics of interaction between dislocations and point defects in bcc iron. Physical Review Materials 2:10.
Crossref
Chan Gao, Dongfeng Tian, Maosheng Li & Dazhi Qian. (2017) Comparative study of displacement cascades simulated with ‘magnetic’ potentials and Mendelev-type potential in α-Fe. Journal of Nuclear Materials 487, pages 167-173.
Crossref
Hong Li, Claudia Draxl, Stefan Wurster, Reinhard Pippan & Lorenz Romaner. (2017) Impact of -band filling on the dislocation properties of bcc transition metals: The case of tantalum-tungsten alloys investigated by density-functional theory . Physical Review B 95:9.
Crossref
D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli & F. Willaime. (2017) Ab initio modeling of dislocation core properties in metals and semiconductors. Acta Materialia 124, pages 633-659.
Crossref
Leili Gharaee, Jaime Marian & Paul Erhart. (2016) The role of interstitial binding in radiation induced segregation in W-Re alloys. Journal of Applied Physics 120:2.
Crossref
G Bonny, D Terentyev, A Bakaev, P Grigorev & D Van Neck. (2014) Many-body central force potentials for tungsten. Modelling and Simulation in Materials Science and Engineering 22:5, pages 053001.
Crossref
J Wang, Y L Zhou, M Li & Q Hou. (2014) A modified W–W interatomic potential based on ab initio calculations . Modelling and Simulation in Materials Science and Engineering 22:1, pages 015004.
Crossref
A. Bakaev, D. Terentyev, G. Bonny, T.P.C. Klaver, P. Olsson & D. Van Neck. (2014) Interaction of minor alloying elements of high-Cr ferritic steels with lattice defects: An ab initio study. Journal of Nuclear Materials 444:1-3, pages 237-246.
Crossref
M-C Marinica, Lisa Ventelon, M R Gilbert, L Proville, S L Dudarev, J Marian, G Bencteux & F Willaime. (2013) Interatomic potentials for modelling radiation defects and dislocations in tungsten. Journal of Physics: Condensed Matter 25:39, pages 395502.
Crossref
S.L. Dudarev. (2013) Density Functional Theory Models for Radiation Damage. Annual Review of Materials Research 43:1, pages 35-61.
Crossref
P. Staikov & N. Djourelov. (2013) Simulations of 〈100〉 edge and 1/2〈111〉 screw dislocations in α-iron and tungsten and positron lifetime calculations. Physica B: Condensed Matter 413, pages 59-63.
Crossref
Tongsik Lee, Michael I Baskes, Steven M Valone & J D Doll. (2012) Atomistic modeling of thermodynamic equilibrium and polymorphism of iron. Journal of Physics: Condensed Matter 24:22, pages 225404.
Crossref
Hong Li, Stefan Wurster, Christian Motz, Lorenz Romaner, Claudia Ambrosch-Draxl & Reinhard Pippan. (2012) Dislocation-core symmetry and slip planes in tungsten alloys: Ab initio calculations and microcantilever bending experiments. Acta Materialia 60:2, pages 748-758.
Crossref
Jean-Louis Boutard, Sergei Dudarev & Michael Rieth. (2011) Modelling structural and plasma facing materials for fusion power plants: Recent advances and outstanding issues in the EURATOM fusion materials programme. Journal of Nuclear Materials 417:1-3, pages 1042-1049.
Crossref
S Chiesa, P M Derlet, S L Dudarev & H Van Swygenhoven. (2011) Optimization of the magnetic potential for α-Fe. Journal of Physics: Condensed Matter 23:20, pages 206001.
Crossref
P A Gordon, T Neeraj, Y Li & J Li. (2010) Screw dislocation mobility in BCC metals: the role of the compact core on double-kink nucleation. Modelling and Simulation in Materials Science and Engineering 18:8, pages 085008.
Crossref
D. Terentyev, G. Bonny, C. Domain & R. C. Pasianot. (2010) Interaction of a screw dislocation with Cr precipitates in bcc Fe studied by molecular dynamics . Physical Review B 81:21.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.