45
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Anomalous slip in Mo-5 at.% Nb and Mo-5 at.% Re alloy single crystals

, &
Pages 583-592 | Received 14 Mar 1975, Published online: 20 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

R. Gröger, Z. Chlup, I. Kuběna & T. Kruml. (2018) Slip activity in molybdenum single crystals compressed at 77 K. Philosophical Magazine 98:30, pages 2749-2768.
Read now
J.B. Yang, Z.J. Zhang & Z.F. Zhang. (2015) Quantitative understanding of anomalous slip in Mo. Philosophical Magazine 95:19, pages 2026-2045.
Read now
G. Taylor & H. Saka. (1991) Some observations on slip in niobium and Nb–Ti alloy deformed in situ in a HVEM. Philosophical Magazine A 64:6, pages 1345-1354.
Read now
W. Wasserbäch. (1985) Anomalous slip in high-purity tantalum single crystals after tensile deformation at 77 K. Philosophical Magazine A 51:4, pages 619-628.
Read now
A.J. Garratt-reed & G. Taylor. (1979) Optical and electron microscopy of niobium crystals deformed below room temperature. Philosophical Magazine A 39:5, pages 597-646.
Read now

Articles from other publishers (20)

Zhen-Jun Zhang, Shuang-Li Lu, Jin-Bo Yang & Zhe-Feng Zhang. (2022) The criterion of anomalous slip at 0 K in body centered cubic metals. Tungsten 5:1, pages 160-168.
Crossref
Mohammad Hasan Joudivand S & Eralp Demir. (2021) A physically based model for bcc materials including non-Schmid effects and its application to single crystals of α-iron at different model scales. Modelling and Simulation in Materials Science and Engineering 29:5, pages 055016.
Crossref
Jakub Holzer, Zdeněk Chlup, Tomáš Kruml & Roman Gröger. (2021) Plastic deformation of magnetically isotropic Cr single crystals compressed at 77 K. International Journal of Plasticity 138, pages 102938.
Crossref
Z.Y. Xia, Z.J. Zhang, J.X. Yan, J.B. Yang & Z.F. Zhang. (2019) General yield behaviors of the {1 1 0} hexagonal dislocation networks in body centered cubic metal molybdenum. Computational Materials Science 170, pages 109116.
Crossref
Carsten Bonnekoh, Ute Jäntsch, Jan Hoffmann, Harald Leiste, Alexander Hartmaier, Daniel Weygand, Andreas Hoffmann & Jens Reiser. (2019) The brittle-to-ductile transition in cold rolled tungsten plates: Impact of crystallographic texture, grain size and dislocation density on the transition temperature. International Journal of Refractory Metals and Hard Materials 78, pages 146-163.
Crossref
R. Gröger, V. Vitek & T. Lookman. (2017) Mesoscale plastic texture in body-centered cubic metals under uniaxial load. Physical Review Materials 1:6.
Crossref
Zheng-Wen Hsiao, Ting-Yi Wu, Delphic Chen, Jui-Chao Kuo & Dong-Yih Lin. (2017) EBSD and electron channeling study of anomalous slip in oligocrystals of high chromium ferritic stainless steel. Micron 94, pages 15-25.
Crossref
C. Marichal, K. Srivastava, D. Weygand, S. Van Petegem, D. Grolimund, P. Gumbsch & H. Van Swygenhoven. (2014) Origin of Anomalous Slip in Tungsten. Physical Review Letters 113:2.
Crossref
K. Srivastava, R. Gröger, D. Weygand & P. Gumbsch. (2013) Dislocation motion in tungsten: Atomistic input to discrete dislocation simulations. International Journal of Plasticity 47, pages 126-142.
Crossref
R. Gröger, V. Racherla, J.L. Bassani & V. Vitek. (2008) Multiscale modeling of plastic deformation of molybdenum and tungsten: II. Yield criterion for single crystals based on atomistic studies of glide of 1/2〈111〉 screw dislocations. Acta Materialia 56:19, pages 5412-5425.
Crossref
R. Gröger & V. Vitek. (2008) Multiscale modeling of plastic deformation of molybdenum and tungsten. III. Effects of temperature and plastic strain rate. Acta Materialia 56:19, pages 5426-5439.
Crossref
R. Gröger, A.G. Bailey & V. Vitek. (2008) Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2〈111〉 screw dislocations at 0K. Acta Materialia 56:19, pages 5401-5411.
Crossref
A. Seeger & W. Wasserb�ch. (2002) Anomalous Slip - A Feature of High-Purity Body-Centred Cubic Metals. physica status solidi (a) 189:1, pages 27-50.
Crossref
Adam J. Schwartz, James S. Stölken, Wayne E. King & Geoffrey H. Campbell. (2001) Lattice rotations during compression deformation of a [011] Ta single crystal. Materials Science and Engineering: A 317:1-2, pages 77-84.
Crossref
W. Wasserbäch. (1995) Anomalous Slip in High-Purity Niobium and Tantalum Single Crystals. Physica Status Solidi (a) 147:2, pages 417-446.
Crossref
G. Taylor. (1992) Thermally-activated deformation of BCC metals and alloys. Progress in Materials Science 36, pages 29-61.
Crossref
A Christian, O Kanert & J.Th.M De Hosson. (1990) Dislocation dynamics in vanadium: A nuclear magnetic resonance and transmission electron microscopic study. Acta Metallurgica et Materialia 38:12, pages 2479-2484.
Crossref
J. Th. M. De Hosson & O. Kanert. (2011) Dislocation Dynamics In B.C.C. Metals: A Nuclear Magnetic Resonance and Transmission Electron Microscopic Study. MRS Proceedings 209.
Crossref
W. Wasserbäch & V. Novák. (1985) Optical investigation of anomalous slip-line patterns in high purity niobium and tantalum single crystals after tensile deformation at 77 K. Materials Science and Engineering 73, pages 197-202.
Crossref
J. W. Christian. (1983) Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metallurgical Transactions A 14:7, pages 1237-1256.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.