2,125
Views
29
CrossRef citations to date
0
Altmetric
Research Paper - Basic Science

Interaction between autophagic vesicles and the Coxiella-containing vacuole requires CLTC (clathrin heavy chain)

ORCID Icon & ORCID Icon
Pages 1710-1725 | Received 08 Aug 2017, Accepted 24 May 2018, Published online: 29 Jul 2018

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Fernande Ayenoue Siadous, Franck Cantet, Erin Van Schaik, Mélanie Burette, Julie Allombert, Anissa Lakhani, Boris Bonaventure, Caroline Goujon, James Samuel, Matteo Bonazzi & Eric Martinez. (2021) Coxiella effector protein CvpF subverts RAB26-dependent autophagy to promote vacuole biogenesis and virulence. Autophagy 17:3, pages 706-722.
Read now
Qiuhong Xiong, Min Yang, Ping Li & Changxin Wu. (2019) Bacteria Exploit Autophagy For Their Own Benefit. Infection and Drug Resistance 12, pages 3205-3215.
Read now

Articles from other publishers (27)

Oxana Semyachkina-Glushkovskaya, Sergey Sokolovski, Ivan Fedosov, Alexander Shirokov, Nikita Navolokin, Alla Bucharskaya, Inna Blokhina, Andrey Terskov, Alexander Dubrovski, Valeria Telnova, Anna Tzven, Maria Tzoy, Arina Evsukova, Daria Zhlatogosrkaya, Viktoria Adushkina, Alexander Dmitrenko, Maria Manzhaeva, Valeria Krupnova, Alessio Noghero, Denis Bragin, Olga Bragina, Ekaterina Borisova, Jürgen Kurths & Edik Rafailov. (2023) Transcranial Photosensitizer-Free Laser Treatment of Glioblastoma in Rat Brain. International Journal of Molecular Sciences 24:18, pages 13696.
Crossref
Tatiana M. Clemente, Rajendra K. Angara & Stacey D. Gilk. (2023) Establishing the intracellular niche of obligate intracellular vacuolar pathogens. Frontiers in Cellular and Infection Microbiology 13.
Crossref
Zan Li, Xiaokai Bao, Xiumei Liu, Weijun Wang, Jianmin Yang, Xibo Zhu & Shuhai Wang. (2023) Transcriptome Profiling Based at Different Time Points after Hatching Deepened Our Understanding on Larval Growth and Development of Amphioctopus fangsiao. Metabolites 13:8, pages 927.
Crossref
Madhur Sachan, Katelynn R. Brann, Marissa S. Fullerton, Daniel E. Voth & Rahul Raghavan. (2023) MicroRNAs Contribute to Host Response to Coxiella burnetii . Infection and Immunity 91:1.
Crossref
Kai Qi Yek, Diana Stojanovski & Hayley J. Newton. 2023. Mitochondria and Bacterial Pathogens - Part B. Mitochondria and Bacterial Pathogens - Part B 1 17 .
Mengjiao Fu, Yuchen Liu, Guannan Wang, Peng Wang, Jianing Zhang, Chen Chen, Mingliang Zhao, Shan Zhang, Jun Jiao, Xuan Ouyang, Yonghui Yu, Bohai Wen, Chengzhi He, Jian Wang, Dongsheng Zhou & Xiaolu Xiong. (2022) A protein–protein interaction map reveals that the Coxiella burnetii effector CirB inhibits host proteasome activity. PLOS Pathogens 18:7, pages e1010660.
Crossref
Mengjiao Fu, Jianing Zhang, Mingliang Zhao, Shan Zhang, Lupeng Dai, Xuan Ouyang, Yonghui Yu, Bohai Wen, Dongsheng Zhou, Yansong Sun, Jun Jiao & Xiaolu Xiong. (2022) Coxiella burnetii Plasmid Effector B Promotes LC3-II Accumulation and Contributes To Bacterial Virulence in a SCID Mouse Model. Infection and Immunity 90:6.
Crossref
Yuanhui Zhu, Xi Wang, Miaoyang Hu, Tingyu Yang, Huaisha Xu, Xiuwen Kang, Xufeng Chen, Lei Jiang, Rong Gao & Jun Wang. (2022) Targeting Aβ and p-Tau Clearance in Methamphetamine-Induced Alzheimer’s Disease-Like Pathology: Roles of Syntaxin 17 in Autophagic Degradation in Primary Hippocampal Neurons. Oxidative Medicine and Cellular Longevity 2022, pages 1-18.
Crossref
Chelsea A. Osbron & Alan G. Goodman. (2022) To die or not to die: Programmed cell death responses and their interactions with Coxiella burnetii infection . Molecular Microbiology 117:4, pages 717-736.
Crossref
Venkatesh Kumaresan, Juexin Wang, Wendy Zhang, Yan Zhang, Dong Xu & Guoquan Zhang. (2022) Coxiella burnetii Virulent Phase I and Avirulent Phase II Variants Differentially Manipulate Autophagy Pathway in Neutrophils. Infection and Immunity 90:3.
Crossref
Ning Wang, Jing Sun, Tao Pang, Haohao Zheng, Fengji Liang, Xiayue He, Danian Tang, Tao Yu, Jianghui Xiong & Suhua Chang. (2022) DNA Methylation Markers and Prediction Model for Depression and Their Contribution for Breast Cancer Risk. Frontiers in Molecular Neuroscience 15.
Crossref
Nicole Lau, David R. Thomas, Yi Wei Lee, Leigh A. Knodler & Hayley J. Newton. (2022) Perturbation of ATG16L1 function impairs the biogenesis of Salmonella and Coxiella replication vacuoles . Molecular Microbiology 117:2, pages 235-251.
Crossref
Arthur Bienvenu, Eric Martinez & Matteo Bonazzi. (2021) Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens. Toxins 13:10, pages 713.
Crossref
Samuel Steiner, Amit Meir & Craig R. Roy. (2021) Coxiella burnetii encodes an LvgA ‐related protein important for intracellular replication . Cellular Microbiology 23:6.
Crossref
Li Shijie, Pan Zhen, Qin Kang, Guo Hua, Yang Qingcheng & Cheng Dongdong. (2021) Deregulation of CLTC interacts with TFG, facilitating osteosarcoma via the TGF‐beta and AKT/mTOR signaling pathways. Clinical and Translational Medicine 11:6.
Crossref
David R. Thomas, Patrice Newton, Nicole Lau & Hayley J. Newton. (2020) Interfering with Autophagy: The Opposing Strategies Deployed by Legionella pneumophila and Coxiella burnetii Effector Proteins. Frontiers in Cellular and Infection Microbiology 10.
Crossref
Svea Matthiesen, Luca Zaeck, Kati Franzke, Rico Jahnke, Charlie Fricke, Michael Mauermeir, Stefan Finke, Anja Lührmann & Michael R. Knittler. (2020) Coxiella burnetii-Infected NK Cells Release Infectious Bacteria by Degranulation. Infection and Immunity 88:11.
Crossref
Miku Kuba, Nitika Neha, Patrice Newton, Yi Wei Lee, Vicki Bennett-Wood, Abderrahman Hachani, David P. De Souza, Brunda Nijagal, Saravanan Dayalan, Dedreia Tull, Malcolm J. McConville, Fiona M. Sansom & Hayley J. Newton. (2020) EirA Is a Novel Protein Essential for Intracellular Replication of Coxiella burnetii. Infection and Immunity 88:6.
Crossref
Melanie Burette & Matteo Bonazzi. (2020) From neglected to dissected: How technological advances are leading the way to the study of Coxiella burnetii pathogenesis . Cellular Microbiology 22:4.
Crossref
Amanda L. Dragan & Daniel E. Voth. (2020) Coxiella burnetii: international pathogen of mystery. Microbes and Infection 22:3, pages 100-110.
Crossref
Patrice NewtonDavid R. ThomasShawna C. O. ReedNicole LauBangyan XuSze Ying OngShivani PasrichaPiyush B. MadhamshettiwarLaura E. Edgington-MitchellKaylene J. Simpson, Craig R. RoyHayley J. Newton. (2020) Lysosomal degradation products induce Coxiella burnetii virulence . Proceedings of the National Academy of Sciences 117:12, pages 6801-6810.
Crossref
Bhavna Padmanabhan, Laura F. Fielden, Abderrahman Hachani, Patrice Newton, David R. Thomas, Hyun-Jung Cho, Chen Ai Khoo, Diana Stojanovski, Craig R. Roy, Nichollas E. Scott & Hayley J. Newton. (2020) Biogenesis of the Spacious Coxiella -Containing Vacuole Depends on Host Transcription Factors TFEB and TFE3 . Infection and Immunity 88:3.
Crossref
Dhritiman Samanta, Tatiana M. Clemente, Baleigh E. Schuler & Stacey D. Gilk. (2019) Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth. PLOS Pathogens 15:12, pages e1007855.
Crossref
Mebratu A Bitew, Nadeeka K Wawegama, Hayley J Newton & Fiona M Sansom. (2019) Meso-tartrate inhibits intracellular replication of Coxiella burnetii , the causative agent of the zoonotic disease Q fever . Pathogens and Disease 77:8.
Crossref
Miku Kuba, Nitika Neha, David P. De Souza, Saravanan Dayalan, Joshua P. M. Newson, Dedreia Tull, Malcolm J. McConville, Fiona M. Sansom & Hayley J. Newton. (2019) Coxiella burnetii utilizes both glutamate and glucose during infection with glucose uptake mediated by multiple transporters . Biochemical Journal 476:19, pages 2851-2867.
Crossref
Eleanor A. Latomanski & Hayley J. Newton. (2019) Taming the Triskelion: Bacterial Manipulation of Clathrin. Microbiology and Molecular Biology Reviews 83:2.
Crossref
Charles L. Larson, Kelsi M. Sandoz, Diane C. Cockrell & Robert A. Heinzen. (2019) Noncanonical Inhibition of mTORC1 by Coxiella burnetii Promotes Replication within a Phagolysosome-Like Vacuole. mBio 10:1.
Crossref