1,835
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

A Triethylene Glycol–Water System: A Study of the TEG Regeneration Processes in Natural Gas Dehydration Plants

, &
Pages 456-464 | Received 30 Nov 2009, Accepted 14 Jan 2010, Published online: 19 Jan 2012

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

A. Kamari, A. H. Mohammadi & A. Bahadori. (2015) Determination of Triethylene Glycol Concentration in Natural Gas Dehydration Systems Using Support Vector Machine Algorithm. Petroleum Science and Technology 33:6, pages 649-656.
Read now

Articles from other publishers (29)

Masoumeh Baghelani, Hossein Kazemian, Behrouz Bayati & Ehsan Noorollahi. (2023) Effect of K/Na ratio on adsorption of sweeted gas in dehydration packed bed adsorber; A Monte Carlo simulation study of single and multicomponent gas mixture. Chemical Engineering Research and Design.
Crossref
Marcin Bernat, Stanisław Nagy & Rafał Smulski. (2023) Use of a New Gas Ejector for a TEG/TREG Natural Gas Dehydration System. Energies 16:13, pages 5011.
Crossref
Daniel Jia Sheng Chong, Dominic C.Y. Foo & Zulfan Adi Putra. (2023) A reduced order model for triethylene glycol natural gas dehydration system. South African Journal of Chemical Engineering 44, pages 51-67.
Crossref
Zoya Moslempour, Sepehr Sadighi, Ali Dashti & Ali Ahmadpour. (2022) Investigating the properties and performance of 3A molecular sieves as an adsorbent to prevent coke formation in olefin dehydration process. International Journal of Chemical Reactor Engineering 20:8, pages 833-843.
Crossref
Alexandre Mendonça Teixeira, Lara de Oliveira Arinelli, José Luiz de Medeiros & Ofélia de Queiroz F. Araújo. (2022) Sustainable offshore natural gas processing with thermodynamic gas-hydrate inhibitor reclamation: Supersonic separation affords carbon capture. Chemical Engineering Research and Design 181, pages 55-73.
Crossref
Gaihuan Liu, Lin Zhu, Jinmen Hong & Huimin Liu. (2022) Technical, Economical, and Environmental Performance Assessment of an Improved Triethylene Glycol Dehydration Process for Shale Gas. ACS Omega 7:2, pages 1861-1873.
Crossref
霏 唐. (2022) Optimization Design Scheme of Natural Gas Desulfurization and Deacidification Process. Hans Journal of Chemical Engineering and Technology 12:05, pages 337-344.
Crossref
Théo Alerte, Jonathan P. Edwards, Christine M. Gabardo, Colin P. O’Brien, Adriana Gaona, Joshua Wicks, Ana Obradović, Amitava Sarkar, Shaffiq A. Jaffer, Heather L. MacLean, David Sinton & Edward H. Sargent. (2021) Downstream of the CO 2 Electrolyzer: Assessing the Energy Intensity of Product Separation . ACS Energy Letters 6:12, pages 4405-4412.
Crossref
Shupanxiang Chen, Guangying Chen, Xiaolan Zhao, Xiao Luo, Hongxia Gao, Wensheng Li & Zhiwu Liang. (2021) Feasibility analysis and process simulation of CO2 dehydration using triethylene glycol for CO2 pipeline transportation. Chinese Journal of Chemical Engineering 40, pages 179-186.
Crossref
Wen-Cong Chen, Xue-Gang You, Ping Liu, Bao-Chang Sun, Guang-Wen Chu & Liang-Liang Zhang. (2021) Enhanced Regeneration of Triethylene Glycol Solution by Rotating Packed Bed for Offshore Natural Gas Dehydration Process: Experimental and Modeling Study. Chemical Engineering and Processing - Process Intensification 168, pages 108562.
Crossref
Zainab Al Ani, Ashish M. Gujarathi & G. Reza Vakili-Nezhaad. (2021) Simultaneous energy and environment-based optimization and retrofit of TEG dehydration process: An industrial case study. Process Safety and Environmental Protection 147, pages 972-984.
Crossref
Anders Andreasen, Iveth Romero & Marco Maschietti. (2020) Validation of an Equilibrium-Stage Model of the Coldfinger Water Exhauster for Enhanced Glycol Regeneration in Natural Gas Dehydration. Industrial & Engineering Chemistry Research 59:44, pages 19668-19679.
Crossref
Georgiy S. Golubev, Ivan A. Podtynnikov, Alexey V. Balynin & Ilya L. Borisov. (2020) Triethylene Glycol Dehydration by Thermopervaporation. Key Engineering Materials 869, pages 182-189.
Crossref
N Kharisma, P S D Arianti, S A Affandy, R P Anugraha, Juwari & Renanto. (2020) Process Design and Steady State Simulation of Natural Gas Dehydration Using Triethylene Glycol (TEG) to Obtain The Optimum Total Annual Costs (TAC). IOP Conference Series: Materials Science and Engineering 778:1, pages 012116.
Crossref
Weida Li, Yu Zhuang, Lei Zhang, Linlin Liu & Jian Du. (2019) Economic evaluation and environmental assessment of shale gas dehydration process. Journal of Cleaner Production 232, pages 487-498.
Crossref
Md Emdadul Haque, Qiang Xu & Srinivas Palanki. (2019) Glycol Loss Minimization for a Natural Gas Dehydration Plant under Upset Conditions. Industrial & Engineering Chemistry Research 58:5, pages 1994-2008.
Crossref
Zong Yang Kong, Ahmed Mahmoud, Shaomin Liu & Jaka Sunarso. (2018) A Parametric Study of Different Recycling Configurations for the Natural Gas Dehydration Process Via Absorption Using Triethylene Glycol. Process Integration and Optimization for Sustainability 2:4, pages 447-460.
Crossref
Zong Yang Kong, Ahmed Mahmoud, Shaomin Liu & Jaka Sunarso. (2018) Revamping existing glycol technologies in natural gas dehydration to improve the purity and absorption efficiency: Available methods and recent developments. Journal of Natural Gas Science and Engineering 56, pages 486-503.
Crossref
Eirini G. Petropoulou & Epaminondas C. Voutsas. (2018) Thermodynamic Modeling and Simulation of Natural Gas Dehydration Using Triethylene Glycol with the UMR-PRU Model. Industrial & Engineering Chemistry Research 57:25, pages 8584-8604.
Crossref
Haiping Chen, Yanan Zhou, Jianyu Sun, Yanda Liu, Yajuan Zhong, Wentao Du & Junjie Lan. (2018) An experimental study of membranes for capturing water vapor from flue gas. Journal of the Energy Institute 91:3, pages 339-348.
Crossref
Mihaela Neagu & Diana Luciana Cursaru. (2017) Technical and economic evaluations of the triethylene glycol regeneration processes in natural gas dehydration plants. Journal of Natural Gas Science and Engineering 37, pages 327-340.
Crossref
Thomas Schneider, Anna Löwa, Stoyan Karagiozov, Lisa Sprenger, Lucía Gutiérrez, Tullio Esposito, Gernot Marten, Katayoun Saatchi & Urs O. Häfeli. (2017) Facile microwave synthesis of uniform magnetic nanoparticles with minimal sample processing. Journal of Magnetism and Magnetic Materials 421, pages 283-291.
Crossref
Amaraporn Kaewchada, Sarun Tubslingkra & Attasak Jaree. (2017) Separation of toluene from heptane via liquid–liquid extraction in microtube contactor using triethylene glycol. Chemical Engineering Research and Design 117, pages 784-791.
Crossref
Girma Gonfa, Mohamad Azmi Bustam, Azmi M. Shariff, Nawshad Muhammad & Sami Ullah. (2016) Quantitative structure–activity relationships (QSARs) for estimation of activity coefficient at infinite dilution of water in ionic liquids for natural gas dehydration. Journal of the Taiwan Institute of Chemical Engineers 66, pages 222-229.
Crossref
Girma Gonfa, Mohamad Azmi Bustam, Azmi M. Sharif, Nawshad Mohamad & Sami Ullah. (2015) Tuning ionic liquids for natural gas dehydration using COSMO-RS methodology. Journal of Natural Gas Science and Engineering 27, pages 1141-1148.
Crossref
Dong-Hun Kwak, Donghyun Yun, Michael Binns, Yeong-Koo Yeo & Jin-Kuk Kim. (2014) Conceptual Process Design of CO 2 Recovery Plants for Enhanced Oil Recovery Applications . Industrial & Engineering Chemistry Research 53:37, pages 14385-14396.
Crossref
DAG A. EIMER. 2014. Gas Treating. Gas Treating 267 281 .
Mohammad M. Ghiasi, Alireza Bahadori & Sohrab Zendehboudi. (2014) Estimation of triethylene glycol (TEG) purity in natural gas dehydration units using fuzzy neural network. Journal of Natural Gas Science and Engineering 17, pages 26-32.
Crossref
Changjun Zou, Pinwen Zhao, Meng Wang, Delei Liu, Hongda Wang & Zhang Wen. (2013) Failure analysis and faults diagnosis of molecular sieve in natural gas dehydration. Engineering Failure Analysis 34, pages 115-120.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.