122
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Effects of whole-stream nutrient enrichment on the concentration and abundance of aquatic hyphomycete conidia in transport

&
Pages 57-65 | Accepted 30 May 2003, Published online: 30 Jan 2017

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

S.C. Sati & S. Bisht. (2006) Utilization of various carbon sources for the growth of waterborne conidial fungi. Mycologia 98:5, pages 678-681.
Read now

Articles from other publishers (31)

Nathan J Tomczyk, Amy D Rosemond, Ally M Whiteis, Jonathan P Benstead & Vladislav Gulis. (2023) Temperature and interspecific interactions drive differences in carbon use efficiencies and biomass stoichiometry among aquatic fungi. FEMS Microbiology Ecology 99:3.
Crossref
Raphael D. Mazor, Martha Sutula, Susanna Theroux, Marcus Beck & Peter R. Ode. (2022) Eutrophication thresholds associated with protection of biological integrity in California wadeable streams. Ecological Indicators 142, pages 109180.
Crossref
Rebeca Arias-Real, Cayetano Gutiérrez-Cánovas, Isabel Muñoz, Cláudia Pascoal & Margarita Menéndez. (2021) Fungal Biodiversity Mediates the Effects of Drying on Freshwater Ecosystem Functioning. Ecosystems 25:4, pages 780-794.
Crossref
Sahadevan Seena, Juliana Barros, Manuel A.S. Graça, Felix Bärlocher & Julio Arce-Funck. 2022. Freshwater Mycology. Freshwater Mycology 1 20 .
Aifa Fathima, Yaser Arafath, Vinitha Sadasivam, Saqib Hassan, George Seghal Kiran & Joseph Selvin. 2022. Freshwater Mycology. Freshwater Mycology 135 149 .
Cláudia Pascoal, Isabel Fernandes, Sahadevan Seena, Michael Danger, Verónica Ferreira & Fernanda Cássio. 2021. The Ecology of Plant Litter Decomposition in Stream Ecosystems. The Ecology of Plant Litter Decomposition in Stream Ecosystems 163 192 .
Noël P.D. Juvigny-Khenafou, Yixin Zhang, Jeremy J. Piggott, David Atkinson, Christoph D. Matthaei, Sunshine A. Van Bael & Naicheng Wu. (2020) Anthropogenic stressors affect fungal more than bacterial communities in decaying leaf litter: A stream mesocosm experiment. Science of The Total Environment 716, pages 135053.
Crossref
Michelle A. Evans-White, Candice Bauer & Sally A. Entrekin. 2020. Contaminants and Ecological Subsidies. Contaminants and Ecological Subsidies 197 251 .
Alan Santiago Tarda, Mario Carlos Nazareno Saparrat & Nora Gómez. (2019) Assemblage of dematiaceous and Ingoldian fungi associated with leaf litter of decomposing Typha latifolia L. (Typhaceae) in riverine wetlands of the Pampean plain (Argentina) exposed to different water quality. Journal of Environmental Management 250, pages 109409.
Crossref
Laryssa H.R. Pazianoto, Alejandro Solla & Verónica Ferreira. (2019) Leaf litter decomposition of sweet chestnut is affected more by oomycte infection of trees than by water temperature. Fungal Ecology 41, pages 269-278.
Crossref
Patrícia Oliveira Fiuza, Loise Araújo Costa, Adriana Oliveira Medeiros, Vladislav Gulis & Luís Fernando Pascholati Gusmão. (2019) Diversity of freshwater hyphomycetes associated with leaf litter of Calophyllum brasiliense in streams of the semiarid region of Brazil. Mycological Progress 18:7, pages 907-920.
Crossref
Vladislav Gulis, Rong Su & Kevin A. Kuehn. 2019. The Structure and Function of Aquatic Microbial Communities. The Structure and Function of Aquatic Microbial Communities 121 155 .
Zutao Ouyang, Song S. Qian, Richard Becker & Jiquan Chen. (2018) The effects of nutrients on stream invertebrates: a regional estimation by generalized propensity score. Ecological Processes 7:1.
Crossref
Ali Nawaz, Witoon Purahong, Robert Lehmann, Martina Herrmann, Kai Uwe Totsche, Kirsten Küsel, Tesfaye Wubet & François Buscot. (2018) First insights into the living groundwater mycobiome of the terrestrial biogeosphere. Water Research 145, pages 50-61.
Crossref
Darshanaa Chellaiah & Catherine M. Yule. (2018) Litter decomposition is driven by microbes and is more influenced by litter quality than environmental conditions in oil palm streams with different riparian types. Aquatic Sciences 80:4.
Crossref
Patrícia Pereira Gomes, Verónica Ferreira, Alan M. Tonin, Adriana Oliveira Medeiros & José Francisco Gonçalves Júnior. (2017) Combined Effects of Dissolved Nutrients and Oxygen on Plant Litter Decomposition and Associated Fungal Communities. Microbial Ecology 75:4, pages 854-862.
Crossref
Edyta Fiałkowska & Agnieszka Pajdak-Stós. (2017) Temperature-Dependence of Predator-Prey Dynamics in Interactions Between the Predatory Fungus Lecophagus sp. and Its Prey L. inermis Rotifers. Microbial Ecology 75:2, pages 400-406.
Crossref
Vladislav Gulis, Kevin A Kuehn, Louie N Schoettle, Desiree Leach, Jonathan P Benstead & Amy D Rosemond. (2017) Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply. The ISME Journal 11:12, pages 2729-2739.
Crossref
Andrés Iroumé, Virginia Ruiz-Villanueva & Lorenzo Picco. (2017) Breakdown of instream wood in low order forested streams of the Southern Chilean mountain ranges. Forest Ecology and Management 401, pages 17-32.
Crossref
Cristiane Biasi, Manuel A. S. Graça, Sandro Santos & Verónica Ferreira. (2017) Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing. Oecologia 184:2, pages 555-568.
Crossref
Fanny Colas, Jean-Marc Baudoin, Frédéric Gob, Vincent Tamisier, Laurent Valette, Karl Kreutzenberger, Didier Lambrigot & Eric Chauvet. (2017) Scale dependency in the hydromorphological control of a stream ecosystem functioning. Water Research 115, pages 60-73.
Crossref
Diana Barros, Patrícia Oliveira, Cláudia Pascoal & Fernanda Cássio. (2016) Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams. Science of The Total Environment 565, pages 489-495.
Crossref
VERÓNICA FERREIRA & ERIC CHAUVET. (2011) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17:1, pages 551-564.
Crossref
NAMIL CHUNG & KELLER SUBERKROPP. (2009) Contribution of fungal biomass to the growth of the shredder, Pycnopsyche gentilis (Trichoptera: Limnephilidae) . Freshwater Biology 54:11, pages 2212-2224.
Crossref
Namil Chung & Keller Suberkropp. (2009) Effects of aquatic fungi on feeding preferences and bioenergetics of Pycnopsyche gentilis (Trichoptera: Limnephilidae). Hydrobiologia 630:1, pages 257-269.
Crossref
K. R. Sridhar, Sofia Duarte, Fernanda Cássio & Cláudia Pascoal. (2009) The Role of Early Fungal Colonizers in Leaf-Litter Decomposition in Portuguese Streams Impacted by Agricultural Runoff. International Review of Hydrobiology 94:4, pages 399-409.
Crossref
Jennifer L. Greenwood, Amy D. Rosemond, J. Bruce Wallace, Wyatt F. Cross & Holly S. Weyers. (2006) Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways. Oecologia 151:4, pages 637-649.
Crossref
Judy L. Meyer, David L. Strayer, J. Bruce Wallace, Sue L. Eggert, Gene S. Helfman & Norman E. Leonard. (2007) The Contribution of Headwater Streams to Biodiversity in River Networks1. JAWRA Journal of the American Water Resources Association 43:1, pages 86-103.
Crossref
Vladislav Gulis, Kevin Kuehn & Keller Suberkropp. 2009. Fungi in Biogeochemical Cycles. Fungi in Biogeochemical Cycles 404 435 .
CECILIA MILLE-LINDBLOM, HELMUT FISCHER & LARS J. TRANVIK. (2006) Litter-associated bacteria and fungi - a comparison of biomass and communities across lakes and plant species. Freshwater Biology 51:4, pages 730-741.
Crossref
Vladislav Gulis, Amy D. Rosemond, Keller Suberkropp, Holly S. Weyers & Jonathan P. Benstead. (2004) Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshwater Biology 49:11, pages 1437-1447.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.