443
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Application of probabilistic neural networks in modelling structural deterioration of stormwater pipes

, , , &
Pages 175-184 | Published online: 16 Feb 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Srinath Shiv Kumar, Dulcy Abraham & Juyeong Choi. (2022) A hybrid framework for mining spatial characteristics of sewer defects from inspection databases. Urban Water Journal 19:1, pages 51-61.
Read now
Vitor Sousa, José P. Matos, Natércia Matias & Inês Meireles. (2019) Statistical comparison of the performance of data-based models for sewer condition modeling. Structure and Infrastructure Engineering 15:12, pages 1680-1693.
Read now
Nicolas Caradot, Hauke Sonnenberg, Ingo Kropp, Alexander Ringe, Stephane Denhez, Andreas Hartmann & Pascale Rouault. (2017) The relevance of sewer deterioration modelling to support asset management strategies. Urban Water Journal 14:10, pages 1007-1015.
Read now
Ming-Der Yang, Yi-Ping Chen, Tung-Ching Su & Yu-Hao Lin. (2017) Sewer pipe defects diagnosis assessment using multivariate analysis on CCTV video imagery. Urban Water Journal 14:5, pages 475-482.
Read now

Articles from other publishers (44)

Sherif Abdelkhalek & Tarek Zayed. (2023) A multi-tier deterioration assessment models for sewer and stormwater pipelines in Hong Kong. Journal of Environmental Management 345, pages 118913.
Crossref
Amenah M. AL‐Imam, Safa Daoud, Ma'mon M. Hatmal & Mutasem Omar Taha. (2023) Augmenting bioactivity by docking‐generated multiple ligand poses to enhance machine learning and pharmacophore modelling: discovery of new TTK inhibitors as case study. Molecular Informatics 42:6.
Crossref
Comfort Salihu, Saeed Reza Mohandes, Ahmed Farouk Kineber, M. Reza Hosseini, Faris Elghaish & Tarek Zayed. (2023) A Deterioration Model for Sewer Pipes Using CCTV and Artificial Intelligence. Buildings 13:4, pages 952.
Crossref
Xuming Zeng, Zinan Wang, Hao Wang, Shengyan Zhu & Shaofeng Chen. (2023) Progress in Drainage Pipeline Condition Assessment and Deterioration Prediction Models. Sustainability 15:4, pages 3849.
Crossref
Hassan Noroznia, Majid Gandomkar, Javad Nikoukar, Ali Aranizadeh & Mirpouya Mirmozaffari. (2023) A Novel Pipeline Age Evaluation: Considering Overall Condition Index and Neural Network Based on Measured Data. Machine Learning and Knowledge Extraction 5:1, pages 252-268.
Crossref
Nour Aljafari, Michael Burrow, Gurmel Ghataora, Mehran Eskandari Torbaghan & Jamil Raja. (2022) Condition Modeling of Railway Drainage Pipes. Journal of Infrastructure Systems 28:4.
Crossref
Guoyang FuJayantha Kodikara. (2022) Physical Model–Based Failure Prediction of Concrete Stormwater Pipes Subjected to Rebar Corrosion. Journal of Pipeline Systems Engineering and Practice 13:4.
Crossref
Saeed Reza Mohandes, Ahmed Farouk Kineber, Sherif Abdelkhalek, Khalid Kaddoura, Moustafa Elsayed, M. Reza Hosseini & Tarek Zayed. (2022) Evaluation of the critical factors causing sewer overflows through modeling of structural equations and system dynamics. Journal of Cleaner Production 375, pages 134035.
Crossref
Lewis O. Makana, Will J. Shepherd, Simon Tait, Christopher D. F. Rogers, Nicole Metje, Joby B. Boxall & Alma N. A. Schellart. (2022) Future Inspection and Deterioration Prediction Capabilities for Buried Distributed Water Infrastructure. Journal of Pipeline Systems Engineering and Practice 13:3.
Crossref
Comfort Salihu, Mohamed Hussein, Saeed Reza Mohandes & Tarek Zayed. (2022) Towards a comprehensive review of the deterioration factors and modeling for sewer pipelines: A hybrid of bibliometric, scientometric, and meta-analysis approach. Journal of Cleaner Production 351, pages 131460.
Crossref
Jingyi Qi, Michael Smith & Nicole Barclay. (2022) Empirical Data-Based Condition Prediction for Stormwater Pipelines with Machine Learning. Empirical Data-Based Condition Prediction for Stormwater Pipelines with Machine Learning.
Ma’mon M. Hatmal, Walhan Alshaer, Ismail S. Mahmoud, Mohammad A. I. Al-Hatamleh, Hamzeh J. Al-Ameer, Omar Abuyaman, Malek Zihlif, Rohimah Mohamud, Mais Darras, Mohammad Al Shhab, Rand Abu-Raideh, Hilweh Ismail, Ali Al-Hamadi & Ali Abdelhay. (2021) Investigating the association of CD36 gene polymorphisms (rs1761667 and rs1527483) with T2DM and dyslipidemia: Statistical analysis, machine learning based prediction, and meta-analysis. PLOS ONE 16:10, pages e0257857.
Crossref
Yiqi Wu, Simon TaitAndrew Nichols & Jamil Raja. (2021) Simulation of Railway Drainage Asset Service Condition Degradation in the UK Using a Markov Chain–Based Approach. Journal of Infrastructure Systems 27:3.
Crossref
Małgorzata Kutyłowska & Dariusz Kowalski. (2021) Application of regression methods for classification of sewers’ damages. Applied Water Science 11:9.
Crossref
Hong Hanh Nguyen, Aaron Peche & Markus Venohr. (2021) Modelling of sewer exfiltration to groundwater in urban wastewater systems: A critical review. Journal of Hydrology 596, pages 126130.
Crossref
Ma'mon M. Hatmal, Omar Abuyaman & Mutasem Taha. (2021) Docking-generated multiple ligand poses for bootstrapping bioactivity classifying Machine Learning: Repurposing covalent inhibitors for COVID-19-related TMPRSS2 as case study. Computational and Structural Biotechnology Journal 19, pages 4790-4824.
Crossref
Ce Gao & Hazem Elzarka. (2021) The use of decision tree based predictive models for improving the culvert inspection process. Advanced Engineering Informatics 47, pages 101203.
Crossref
Mohammadreza Malek MohammadiMohammad NajafiSharareh KermanshachiVinayak Kaushal & Ramtin Serajiantehrani. (2020) Factors Influencing the Condition of Sewer Pipes: State-of-the-Art Review. Journal of Pipeline Systems Engineering and Practice 11:4.
Crossref
Ngandu Balekelayi & Solomon Tesfamariam. (2020) Geoadditive Quantile Regression Model for Sewer Pipes Deterioration Using Boosting Optimization Algorithm. Sustainability 12:20, pages 8733.
Crossref
Jeroen Verheugd, Paulo R de Oliveira da Costa, Reza Refaei Afshar, Yingqian Zhang & Sjoerd Boersma. (2020) Predicting Water Pipe Failures with a Recurrent Neural Hawkes Process Model. Predicting Water Pipe Failures with a Recurrent Neural Hawkes Process Model.
Xianfei Yin, Yuan Chen, Ahmed Bouferguene & Mohamed Al-Hussein. (2020) Data-driven bi-level sewer pipe deterioration model: Design and analysis. Automation in Construction 116, pages 103181.
Crossref
Asya Kalinichenko & Larysa Arseniyeva. (2020) Electronic nose combined with chemometric approaches to assess authenticity and adulteration of sausages by soy protein. Sensors and Actuators B: Chemical 303, pages 127250.
Crossref
Michael StonerWeichiang Pang & Kalyan Piratla. (2019) Predicting Culvert Deterioration Using Physical and Environmental Time-Independent Variables. Journal of Pipeline Systems Engineering and Practice 10:4.
Crossref
Weslei Gomes de Sousa, Elis Regina Pereira de Melo, Paulo Henrique De Souza Bermejo, Rafael Araújo Sousa Farias & Adalmir Oliveira Gomes. (2019) How and where is artificial intelligence in the public sector going? A literature review and research agenda. Government Information Quarterly 36:4, pages 101392.
Crossref
Tuija Laakso, Teemu Kokkonen, Ilkka Mellin & Riku Vahala. (2018) Sewer Condition Prediction and Analysis of Explanatory Factors. Water 10:9, pages 1239.
Crossref
N. Caradot, M. Riechel, M. Fesneau, N. Hernandez, A. Torres, H. Sonnenberg, E. Eckert, N. Lengemann, J. Waschnewski & P. Rouault. (2018) Practical benchmarking of statistical and machine learning models for predicting the condition of sewer pipes in Berlin, Germany. Journal of Hydroinformatics 20:5, pages 1131-1147.
Crossref
Szeląg Bartosz, Adam Kiczko, Jan Studziński & Lidia Dąbek. (2018) Hydrodynamic and probabilistic modelling of storm overflow discharges. Journal of Hydroinformatics 20:5, pages 1100-1110.
Crossref
Kiyeon Kim, Joonyoung Kim, Tae-Young Kwak & Choong-Ki Chung. (2018) Logistic regression model for sinkhole susceptibility due to damaged sewer pipes. Natural Hazards 93:2, pages 765-785.
Crossref
Hind El-HousniMaxim OuelletSophie Duchesne. (2018) Identification of most significant factors for modeling deterioration of sewer pipes. Canadian Journal of Civil Engineering 45:3, pages 215-226.
Crossref
A. Kalinichenko, L. Arseniyeva & V. Pasichnyi. (2017) ELECTRONIC NOSE AND PROBABILISTIC NEURAL NETWORK USE FOR SAUSAGES IDENTIFICATION. Bulletin of Taras Shevchenko National University of Kyiv. Chemistry:2(54), pages 47-51.
Crossref
Bartosz Szeląg & Piotr Siwicki. (2017) Application of the selected classification models to the analysis of the settling capacity of the activated sludge – case study. E3S Web of Conferences 17, pages 00089.
Crossref
He Jin & Kalyan R. Piratla. (2016) A resilience-based prioritization scheme for water main rehabilitation. Journal of Water Supply: Research and Technology-Aqua 65:4, pages 307-321.
Crossref
G. Del Giudice, R. Padulano & D. Siciliano. (2016) Multivariate probability distribution for sewer system vulnerability assessment under data-limited conditions. Water Science and Technology 73:4, pages 751-760.
Crossref
Marius Møller Rokstad & Rita Maria Ugarelli. (2015) Evaluating the role of deterioration models for condition assessment of sewers. Journal of Hydroinformatics 17:5, pages 789-804.
Crossref
Indranil Seth. (2015) Use of Artificial Neural Networks and Genetic Algorithms in Urban Water Management: A Brief Overview. Journal - American Water Works Association 107:5, pages 93-97.
Crossref
Faheem Shaukat, Imran Shafi & Muhammad Shoaib. (2014) Classification and diagnosis of E.coli using protein sub-cellular localization sites. Classification and diagnosis of E.coli using protein sub-cellular localization sites.
Sophie DuchesneKassandra BouchardBabacar ToumbouJean-Pierre Villeneuve. (2014) Assessing the impact of renewal scenarios on the global structural state of sewer pipe networks. Canadian Journal of Civil Engineering 41:8, pages 761-768.
Crossref
Vitor Sousa, José P. Matos & Natércia Matias. (2014) Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition. Automation in Construction 44, pages 84-91.
Crossref
Recep Gorguluarslan, Eui-Soo Kim, Seung-Kyum Choi & Hae-Jin Choi. (2014) Reliability estimation of washing machine spider assembly via classification. The International Journal of Advanced Manufacturing Technology 72:9-12, pages 1581-1591.
Crossref
P. Davis, E. Sullivan, D. Marlow & D. Marney. (2013) A selection framework for infrastructure condition monitoring technologies in water and wastewater networks. Expert Systems with Applications 40:6, pages 1947-1958.
Crossref
Sophie Duchesne, Guillaume Beardsell, Jean‐Pierre Villeneuve, Babacar Toumbou & Kassandra Bouchard. (2012) A Survival Analysis Model for Sewer Pipe Structural Deterioration. Computer-Aided Civil and Infrastructure Engineering 28:2, pages 146-160.
Crossref
John MashfordDavid MarlowDung TranRobert May. (2011) Prediction of Sewer Condition Grade Using Support Vector Machines. Journal of Computing in Civil Engineering 25:4, pages 283-290.
Crossref
D. H. TranB. J. C. PereraA. W. M. Ng. (2010) Hydraulic Deterioration Models for Storm-Water Drainage Pipes: Ordered Probit versus Probabilistic Neural Network. Journal of Computing in Civil Engineering 24:2, pages 140-150.
Crossref
H. D. TranB. J. C. PereraA. W. M. Ng. (2009) Predicting Structural Deterioration Condition of Individual Storm-Water Pipes Using Probabilistic Neural Networks and Multiple Logistic Regression Models. Journal of Water Resources Planning and Management 135:6, pages 553-557.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.