657
Views
25
CrossRef citations to date
0
Altmetric
Articles

LC-MS/MS-based determination of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in poultry meat from the Punjab-Pakistan

, , , , , , & ORCID Icon show all
Pages 1530-1542 | Received 23 Dec 2017, Accepted 28 Mar 2018, Published online: 01 Jun 2018

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Lixia Yang, Zi Yi, Xike Zeng, Xiaobei Huang, Feifei Zhong, Jinsha Zhou & Zhipeng Qiu. (2022) Sensitive Fluorescent Determination of Chloramphenicol Based upon Graphdiyne and RecJf Exonuclease-Assisted Signal Amplification. Analytical Letters 55:18, pages 2817-2828.
Read now
Ewelina Patyra & Krzysztof Kwiatek. (2019) HPLC-DAD analysis of florfenicol and thiamphenicol in medicated feedingstuffs. Food Additives & Contaminants: Part A 36:8, pages 1184-1190.
Read now

Articles from other publishers (23)

Junlin Chen, Hong Lin, Limin Cao, Jianxin Sui, Lei Wang, Xiu Fang & Kaiqiang Wang. (2023) On-site detection of chloramphenicol in fish using SERS-based magnetic aptasensor coupled with a handheld Raman spectrometer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 303, pages 123211.
Crossref
Qian Han, Ling Fan, Xiuying Liu, Yiwei Tang, Pingping Wang, Zaixi Shu, Wei Zhang & Lijie Zhu. (2023) Lateral Flow Immunoassay Based on Quantum-Dot Nanobeads for Detection of Chloramphenicol in Aquatic Products. Molecules 28:22, pages 7496.
Crossref
Shikha Batish & Jaspreet Kaur Rajput. (2023) Quercetin capped silver nanoparticles as an electrochemical sensor for ultrasensitive detection of chloramphenicol in food and water samples. Journal of Food Composition and Analysis 122, pages 105421.
Crossref
Hao Zhou, Meiyu Zhang, Qianqian Chen, Qi Shan, Shugui Liu, Jiawei Lin, Lisha Ma, Guangming Zheng, Lichun Li, Cheng Zhao, Linting Wei, Xiaoxin Dai & Yi Yin. (2023) Determination of amphenicol antibiotic residues in aquaculture products by response surface methodology modified QuEChERS method combined with UPLC-MS/MS. Microchemical Journal 190, pages 108729.
Crossref
Surisa Sa-nguanprang, Anukorn Phuruangrat & Opas Bunkoed. (2023) Fluorescent probe of quantum dots and zinc oxide in a highly selective polymer simultaneously determined florfenicol and sparfloxacin. Microchimica Acta 190:4.
Crossref
Hongli Ye, Siman Li, Yinfeng Xi, Yongfu Shi, Xiaorui Shang & Dongmei Huang. (2022) Highly Sensitive Determination of Antibiotic Residues in Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Antibiotics 11:10, pages 1427.
Crossref
Abhishek K. J., Sathish Reddy, Shubha Acharya, Lakshmi B., K. Deepak, C. S. Naveen, K. N. Harish & Seeram Ramakrishna. (2022) A review on nanomaterial-based electrodes for the electrochemical detection of chloramphenicol and furazolidone antibiotics. Analytical Methods 14:34, pages 3228-3249.
Crossref
Adil Elik & Nail Altunay. (2022) Chemometric approach for the spectrophotometric determination of chloramphenicol in various food matrices: Using natural deep eutectic solvents. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 276, pages 121198.
Crossref
Hae-Ni Jung, Da-Hee Park, Yeon-Jae Choi, Se-Hyeong Kang, Hee-Jung Cho, Jeong-Min Choi, Jae-Han Shim, Ahmed A. Zaky, A. M. Abd El-Aty & Ho-Chul Shin. (2022) Simultaneous Quantification of Chloramphenicol, Thiamphenicol, Florfenicol, and Florfenicol Amine in Animal and Aquaculture Products Using Liquid Chromatography-Tandem Mass Spectrometry. Frontiers in Nutrition 8.
Crossref
Arezoo Najafi, Bahman Farajmand, Hamid Reza Sharafi & Mohammad Reza Yaftian. (2022) A fast and sensitive detection of low-level chloramphenicol in food samples using the IMS/homogenizer assisted DLPME combination. Journal of Food Composition and Analysis 105, pages 104204.
Crossref
İmren Taşkın, Öznur Güngör & Serap Titretir Duran. (2021) Voltammetric determination of florfenicol by using poly(3-methylthiophene) modified glassy carbon electrode. Polymer Bulletin 78:8, pages 4721-4741.
Crossref
Ancuta Moga, María Vergara‐Barberán, María Jesús Lerma‐García, Enrique Javier Carrasco‐Correa, José Manuel Herrero‐Martínez & Ernesto Francisco Simó‐Alfonso. (2021) Determination of antibiotics in meat samples using analytical methodologies: A review. Comprehensive Reviews in Food Science and Food Safety 20:2, pages 1681-1716.
Crossref
Wei Sheng, Na Huang, Yue Liu, Biao Zhang, Wanli Zhang & Shuo Wang. (2020) An Ultrasensitive Fluorescence Immunoassay Based on Magnetic Separation and Upconversion Nanoparticles as Labels for the Detection of Chloramphenicol in Animal-Derived Foods. Food Analytical Methods 13:11, pages 2039-2049.
Crossref
Shih‐Wei Wu, Min‐Ying Wang, Biing‐Hui Liu & Feng‐Yih Yu. (2020) Sensitive enzyme‐linked immunosorbent assay and gold nanoparticle immunochromatocgraphic strip for rapid detecting chloramphenicol in food. Journal of Food Safety 40:2.
Crossref
Nelson Caro, Tamara Bruna, Antonio Guerreiro, Paola Alvarez-Tejos, Virginia Garretón, Sergey Piletsky, Jorge González-Casanova, Diana Rojas-Gómez & Nicole Ehrenfeld. (2020) Florfenicol Binding to Molecularly Imprinted Polymer Nanoparticles in Model and Real Samples. Nanomaterials 10:2, pages 306.
Crossref
DanNa Zhou, YaChao Li, LingLi Huang, MingRong Qian, Dong Li, GuiZhi Sun & Bo Yang. (2020) A reliable and cost-efficient TLC-HPLC method for determining total florfenicol residues in porcine edible tissues. Food Chemistry 303, pages 125399.
Crossref
Guotian Wang, Bo Wang, Xia Zhao, Xing Xie, Kaizhou Xie, Xutang Wang, Genxi Zhang, Tao Zhang, Xuezhong Liu & Guojun Dai. (2019) Determination of thiamphenicol, florfenicol and florfenicol amine residues in poultry meat and pork via ASE-UPLC-FLD. Journal of Food Composition and Analysis 81, pages 19-27.
Crossref
M. Manimekalai, Ashish Rawson, Animesh Singh Sengar & K. Suresh Kumar. (2019) Development, Optimization, and Validation of Methods for Quantification of Veterinary Drug Residues in Complex Food Matrices Using Liquid-Chromatography—A Review. Food Analytical Methods 12:8, pages 1823-1837.
Crossref
Ningge Jian, Ruixian Li, Jian Li, Sihui Liang, Qian Xu & Chunmin Wang. (2019) Simple, efficient, and eco‐friendly sample preparation for simultaneous determination of paracetamol and chloramphenicol in meat. Journal of Separation Science 42:16, pages 2696-2705.
Crossref
Bo Wang, Maoda Pang, Xia Zhao, Kaizhou Xie, Peiyang Zhang, Genxi Zhang, Tao Zhang, Xuezhong Liu & Guojun Dai. (2019) Development and comparison of liquid–liquid extraction and accelerated solvent extraction methods for quantitative analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry eggs. Journal of Mass Spectrometry 54:6, pages 488-494.
Crossref
Bo Wang, Xing Xie, Xia Zhao, Kaizhou Xie, Zhixiang Diao, Genxi Zhang, Tao Zhang & Guojun Dai. (2019) Development of an Accelerated Solvent Extraction-Ultra-Performance Liquid Chromatography-Fluorescence Detection Method for Quantitative Analysis of Thiamphenicol, Florfenicol and Florfenicol Amine in Poultry Eggs. Molecules 24:9, pages 1830.
Crossref
Ekaterina Pokrant, Ricardo Riquelme, Aldo Maddaleno, Betty San Martín & Javiera Cornejo. (2018) Residue Depletion of Florfenicol and Florfenicol Amine in Broiler Chicken Claws and a Comparison of Their Concentrations in Edible Tissues Using LC–MS/MS. Molecules 23:9, pages 2211.
Crossref
Anthony Kallas-Chemaly. (2015) Mini-Review on Pathogenesis and Diagnosis of Vesicoureteral Reflux in Children. Urology & Nephrology Open Access Journal 2:1.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.