639
Views
79
CrossRef citations to date
0
Altmetric
Original Articles

Nanoparticles in Separation Science—Recent Developments

&
Pages 3309-3336 | Received 17 Jun 2002, Accepted 06 Aug 2002, Published online: 25 Oct 2011

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Ting Qiao, Li-yun Ma, Xiaoling Wang & Zhi-Guo Shi. (2018) The flow-through silica as the matrix to immobilize gold nanoparticles for HPLC applications. Journal of Liquid Chromatography & Related Technologies 41:3, pages 107-113.
Read now
Yanqing Wang, Jin Ouyang, Willy RG Baeyens & Joris R Delanghe. (2007) Use of nanomaterials in capillary and microchip electrophoresis. Expert Review of Proteomics 4:2, pages 287-298.
Read now

Articles from other publishers (76)

Yun Zhou, Ziye Dong, Hermella Andarge, Wei Li & Dimitri Pappas. (2020) Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation. The Analyst 145:1, pages 257-267.
Crossref
L. A. Kartsova, A. V. Kravchenko & E. A. Kolobova. (2019) Covalent Coatings of Quartz Capillaries for the Electrophoretic Determination of Biologically Active Analytes. Journal of Analytical Chemistry 74:8, pages 729-737.
Crossref
Mariana R. Gama, Fábio R.P. Rocha & Carla B.G. Bottoli. (2019) Monoliths: Synthetic routes, functionalization and innovative analytical applications. TrAC Trends in Analytical Chemistry 115, pages 39-51.
Crossref
Mohammad Zarei. 2019. Handbook of Smart Materials in Analytical Chemistry. Handbook of Smart Materials in Analytical Chemistry 675 697 .
X. G. Qiao, P.-Y. Dugas, L. Veyre & E. Bourgeat-Lami. (2018) l -Arginine-Catalyzed Synthesis of Nanometric Organosilica Particles through a Waterborne Sol–Gel Process and Their Porous Structure Analysis . Langmuir 34:23, pages 6784-6796.
Crossref
Pouria Amani, Mohammad Amani, Goodarz Ahmadi, Omid Mahian & Somchai Wongwises. (2018) A critical review on the use of nanoparticles in liquid–liquid extraction. Chemical Engineering Science 183, pages 148-176.
Crossref
Rani Bushra. 2018. Nanomaterials in Chromatography. Nanomaterials in Chromatography 403 414 .
Mariana Roberto Gama & Carla Beatriz Grespan Bottoli. 2018. Nanomaterials in Chromatography. Nanomaterials in Chromatography 255 297 .
Sandya R. Beeram, Elliott Rodriguez, Suresh Doddavenkatanna, Zhao Li, Allegra Pekarek, Darin Peev, Kathryn Goerl, Gianfranco Trovato, Tino Hofmann & David S. Hage. (2017) Nanomaterials as stationary phases and supports in liquid chromatography. ELECTROPHORESIS 38:19, pages 2498-2512.
Crossref
Elizabeth Guihen. (2017) Recent highlights in electro-driven separations- selected applications of alkylthiol gold nanoparticles in capillary electrophoresis and capillary electro-chromatography. ELECTROPHORESIS 38:17, pages 2184-2192.
Crossref
Mohammad Zarei, Mohanna Zarei & Masoomeh Ghasemabadi. (2017) Nanoparticle improved separations: From capillary to slab gel electrophoresis. TrAC Trends in Analytical Chemistry 86, pages 56-74.
Crossref
Elizabeth Guihen. 2016. Advanced Environmental Analysis. Advanced Environmental Analysis 355 376 .
Michael C. Leopold, Tran T. Doan, Melissa J. Mullaney, Andrew F. Loftus & Christopher M. Kidd. (2015) Electrochemical characterization of self-assembled monolayers on gold substrates derived from thermal decomposition of monolayer-protected cluster films. Journal of Applied Electrochemistry 45:10, pages 1069-1084.
Crossref
Hyojin Kim, Young-Jae Jin, Beomsu Shin-Il Kim, Toshiki Aoki & Giseop Kwak. (2015) Optically Active Conjugated Polymer Nanoparticles from Chiral Solvent Annealing and Nanoprecipitation. Macromolecules 48:13, pages 4754-4757.
Crossref
Lydia Terborg, Jorge C. Masini, Michelle Lin, Katriina Lipponen, Marja-Liisa Riekolla & Frantisek Svec. (2015) Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode. Journal of Advanced Research 6:3, pages 441-448.
Crossref
Enrique Javier Carrasco-Correa, Guillermo Ramis-Ramos & José Manuel Herrero-Martínez. (2015) Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography. Journal of Chromatography A 1385, pages 77-84.
Crossref
Frantisek Svec & Yongqin Lv. (2014) Advances and Recent Trends in the Field of Monolithic Columns for Chromatography. Analytical Chemistry 87:1, pages 250-273.
Crossref
G. Rosas, J. Chihuaque, E. Bedolla, R. Esparza & R. Pérez. (2015) Synthesis of AlFe Intermetallic Nanoparticles by High-Energy Ball Milling. MRS Proceedings 1766, pages 181-186.
Crossref
Mohammad Zarei, Elaheh K. Goharshadi, Hossein Ahmadzadeh & Sara Samiee. (2015) Improvement of heat dissipation in agarose gel electrophoresis by metal oxide nanoparticles. RSC Advances 5:108, pages 88655-88665.
Crossref
Wenwen Hu, Tingting Hong, Xing Gao & Yibing Ji. (2014) Applications of nanoparticle-modified stationary phases in capillary electrochromatography. TrAC Trends in Analytical Chemistry 61, pages 29-39.
Crossref
Endler M. Borges, Mauricio A. Rostagno & M. Angela A. Meireles. (2014) Sub-2 μm fully porous and partially porous (core–shell) stationary phases for reversed phase liquid chromatography. RSC Adv. 4:44, pages 22875-22887.
Crossref
Shanshan Tong, Shuxia Liu, Huiqi Wang & Qiong Jia. (2013) Recent Advances of Polymer Monolithic Columns Functionalized with Micro/Nanomaterials: Synthesis and Application. Chromatographia 77:1-2, pages 5-14.
Crossref
Elizabeth Guihen. (2013) Nanoparticles in modern separation science. TrAC Trends in Analytical Chemistry 46, pages 1-14.
Crossref
Lee Jia, Yusheng Lu, Jingwei Shao, Xing-Jie Liang & Yan Xu. (2013) Nanoproteomics: a new sprout from emerging links between nanotechnology and proteomics. Trends in Biotechnology 31:2, pages 99-107.
Crossref
Ekaterina P. Nesterenko, Pavel N. Nesterenko, Damian Connolly, Xiaoyun He, Patrick Floris, Emer Duffy & Brett Paull. (2013) Nano-particle modified stationary phases for high-performance liquid chromatography. The Analyst 138:15, pages 4229.
Crossref
Libo Li, Huan Yu, Dong Liu & Tianyan You. (2013) A novel dark-field microscopy technique coupled with capillary electrophoresis for visual analysis of single nanoparticles. The Analyst 138:13, pages 3705.
Crossref
Francisco Pena-Pereira, Regina M.B.O. Duarte & Armando C. Duarte. (2012) Immobilization strategies and analytical applications for metallic and metal-oxide nanomaterials on surfaces. TrAC Trends in Analytical Chemistry 40, pages 90-105.
Crossref
Yongqin Lv, Zhixing Lin & Frantisek Svec. (2012) Hypercrosslinked Large Surface Area Porous Polymer Monoliths for Hydrophilic Interaction Liquid Chromatography of Small Molecules Featuring Zwitterionic Functionalities Attached to Gold Nanoparticles Held in Layered Structure. Analytical Chemistry 84:20, pages 8457-8460.
Crossref
Damian Connolly, Sinead Currivan & Brett Paull. (2012) Polymeric monolithic materials modified with nanoparticles for separation and detection of biomolecules: A review. PROTEOMICS 12:19-20, pages 2904-2917.
Crossref
Li Wan, Lingyi Zhang, Wen Lei, Yaxian Zhu, Weibing Zhang & Yanqin Wang. (2012) Novel hybrid organic–inorganic monolithic column containing mesoporous nanoparticles for capillary electrochromatography. Talanta 98, pages 277-281.
Crossref
Hui Li, Guo-Sheng Ding, ChunYue Yue & An-Na Tang. (2012) Diamino moiety functionalized silica nanoparticles as pseudostationary phase in capillary electrochromatography separation of plant auxins. ELECTROPHORESIS 33:13, pages 2012-2018.
Crossref
Wen Lei, Ling-Yi Zhang, Li Wan, Bian-Fang Shi, Yan-Qin Wang & Wei-Bing Zhang. (2012) Hybrid monolithic columns with nanoparticles incorporated for capillary electrochromatography. Journal of Chromatography A 1239, pages 64-71.
Crossref
Ivan Mikšík, Kateřina Lacinová, Zdeňka Zmatlíková, Pavla Sedláková, Vladimír Král, David Sýkora, Pavel Řezanka & Václav Kašička. (2012) Open‐tubular capillary electrochromatography with bare gold nanoparticles‐based stationary phase applied to separation of trypsin digested native and glycated proteins. Journal of Separation Science 35:8, pages 994-1002.
Crossref
Frantisek Svec. (2012) Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. Journal of Chromatography A 1228, pages 250-262.
Crossref
Ivan Mikšík, Kateřina Lacinová, Zdeňka Zmatlíková, Pavla Sedláková, Vladimír Král, David Sýkora, Pavel Řezanka & Václav Kašička. (2012) Open-tubular capillary electrochromatography with bare gold nanoparticles-based stationary phase applied to separation of trypsin digested native and glycated proteins. Journal of Separation Science, pages n/a-n/a.
Crossref
Michael R. Ivanov & Amanda J. Haes. (2012) Anionic Functionalized Gold Nanoparticle Continuous Full Filling Separations: Importance of Sample Concentration. Analytical Chemistry 84:3, pages 1320-1326.
Crossref
Francis P. Zamborini, Lanlan Bao & Radhika Dasari. (2011) Nanoparticles in Measurement Science. Analytical Chemistry 84:2, pages 541-576.
Crossref
Tom HasellSamantha Y. ChongKim E. JelfsDave J. AdamsAndrew I. Cooper. (2011) Porous Organic Cage Nanocrystals by Solution Mixing. Journal of the American Chemical Society 134:1, pages 588-598.
Crossref
B. Hu & M. He. 2012. Comprehensive Sampling and Sample Preparation. Comprehensive Sampling and Sample Preparation 365 394 .
Pavel Řezanka, Klára Navrátilová, Pavel Žvátora, David Sýkora, Pavel Matějka, Ivan Mikšík, Václav Kašička & Vladimír Král. (2011) Cyclodextrin modified gold nanoparticles-based open-tubular capillary electrochromatographic separations of polyaromatic hydrocarbons. Journal of Nanoparticle Research 13:11, pages 5947-5957.
Crossref
Bassam Alfeeli, Vaibhav Jain, Richard K. Johnson, Frederick L. Beyer, James R. Heflin & Masoud Agah. (2011) Characterization of poly(2,6-diphenyl-p-phenylene oxide) films as adsorbent for microfabricated preconcentrators. Microchemical Journal 98:2, pages 240-245.
Crossref
Min Li, Xi Liu, Fengyi Jiang, Liping Guo & Li Yang. (2011) Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase. Journal of Chromatography A 1218:23, pages 3725-3729.
Crossref
Claire André, Rania Aljhani, Tijani Gharbi & Yves C. Guillaume. (2011) Incorporation of carbon nanotubes in a silica HPLC column to enhance the chromatographic separation of peptides: Theoretical and practical aspects. Journal of Separation Science 34:11, pages 1221-1227.
Crossref
Stuart D. Chambers, Frantisek Svec & Jean M.J. Fréchet. (2011) Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. Journal of Chromatography A 1218:18, pages 2546-2552.
Crossref
Michael R. Ivanov & Amanda J. Haes. (2011) Nanomaterial surface chemistry design for advancements in capillary electrophoresis modes. The Analyst 136:1, pages 54-63.
Crossref
Chung-Shu Wu, Fu-Ken Liu & Fu-Hsiang Ko. (2010) Potential role of gold nanoparticles for improved analytical methods: an introduction to characterizations and applications. Analytical and Bioanalytical Chemistry 399:1, pages 103-118.
Crossref
Yu. A. Zolotov. (2010) Nanoanalytics. Journal of Analytical Chemistry 65:12, pages 1207-1208.
Crossref
Pelle Ohlsson, Olga Ordeig, Christian Nilsson, Ian Harwigsson, Jörg P. Kutter & Staffan Nilsson. (2010) Microchip electroseparation of proteins using lipid-based nanoparticles. ELECTROPHORESIS 31:22, pages 3696-3702.
Crossref
Li-Chih Hu, Mariya Khiterer, Shing-Jong Huang, Jerry Chun Chung Chan, Joseph R. Davey & Kenneth J. Shea. (2010) Uniform, Spherical Bridged Polysilsesquioxane Nano- and Microparticles by a Nonemulsion Method. Chemistry of Materials 22:18, pages 5244-5250.
Crossref
Qing Cao, Yan Xu, Feng Liu, Frantisek Svec & Jean M. J. Fréchet. (2010) Polymer Monoliths with Exchangeable Chemistries: Use of Gold Nanoparticles As Intermediate Ligands for Capillary Columns with Varying Surface Functionalities. Analytical Chemistry 82:17, pages 7416-7421.
Crossref
Muhammad J. A. Shiddiky & Yoon-Bo Shim. 2010. Microfluidic Devices in Nanotechnology. Microfluidic Devices in Nanotechnology 213 253 .
Li Yang, Cuijie Chen, Xi Liu, Jing Shi, Guang Wang, Liande Zhu, Liping Guo, Jeremy D. Glennon, Norma M. Scully & Barry E. Doherty. (2010) Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography. ELECTROPHORESIS 31:10, pages 1697-1705.
Crossref
Yan Xu, Qing Cao, Frantisek Svec & Jean M. J. Fréchet. (2010) Porous Polymer Monolithic Column with Surface-Bound Gold Nanoparticles for the Capture and Separation of Cysteine-Containing Peptides. Analytical Chemistry 82:8, pages 3352-3358.
Crossref
Y Q Fu, C Shearwood, B Xu, L G Yu & K A Khor. (2010) Characterization of spark plasma sintered Ag nanopowders. Nanotechnology 21:11, pages 115707.
Crossref
David Sýkora, Václav Kašička, Ivan Mikšík, Pavel Řezanka, Kamil Záruba, Pavel Matějka & Vladimír Král. (2010) Application of gold nanoparticles in separation sciences. Journal of Separation Science 33:3, pages 372-387.
Crossref
Lai-Sheng Li, Yong Wang, David James Young, Siu-Choon Ng & Timothy Thatt Yang Tan. (2010) Monodispersed submicron porous silica particles functionalized with CD derivatives for chiral CEC. ELECTROPHORESIS 31:2, pages 378-387.
Crossref
Hongwei Du, Paul D. Hamilton, Matthew A. Reilly, André d’Avignon, Pramit Biswas & Nathan Ravi. (2009) A facile synthesis of highly water-soluble, core–shell organo-silica nanoparticles with controllable size via sol–gel process. Journal of Colloid and Interface Science 340:2, pages 202-208.
Crossref
Noumie Surugau & Pawel L. Urban. (2009) Electrophoretic methods for separation of nanoparticles. Journal of Separation Science 32:11, pages 1889-1906.
Crossref
Elizabeth Guihen & William T. O'Connor. (2009) Current separation and detection methods in microdialysis the drive towards sensitivity and speed. ELECTROPHORESIS 30:12, pages 2062-2075.
Crossref
K. H. Wee & Renbi Bai. 2009. Nanotechnologies for Water Environment Applications. Nanotechnologies for Water Environment Applications 137 158 .
Zhengxiang Zhang, Bo Yan, Yiping Liao & Huwei Liu. (2008) Nanoparticle: is it promising in capillary electrophoresis?. Analytical and Bioanalytical Chemistry 391:3, pages 925-927.
Crossref
Yu-Fen Huang, Cheng-Kang Chiang, Yang-Wei Lin, Kungtien Liu, Chou-Chen Hu, Ming-Jong Bair & Huan-Tsung Chang. (2008) Capillary electrophoretic separation of biologically active amines and acids using nanoparticle-coated capillaries. ELECTROPHORESIS 29:9, pages 1942-1951.
Crossref
Dan-ning Liu, Jing Wang, Yu-gao Guo, Rui-juan Yuan, Huai-feng Wang & James J. Bao. (2008) Separation of aromatic acids by wide-bore electrophoresis with nanoparticles prepared by electrospray as pseudostationary phase. ELECTROPHORESIS 29:4, pages 863-870.
Crossref
Peter Viberg. 2008. Food Contaminants and Residue Analysis. Food Contaminants and Residue Analysis 231 255 .
Xiaoyou Xu, K. Kenneth Caswell, Elizabeth Tucker, Saswat Kabisatpathy, K. Lisa Brodhacker & Walter A. Scrivens. (2007) Size and shape separation of gold nanoparticles with preparative gel electrophoresis. Journal of Chromatography A 1167:1, pages 35-41.
Crossref
Christian Nilsson, Staffan Birnbaum & Staffan Nilsson. (2007) Use of nanoparticles in capillary and microchip electrochromatography. Journal of Chromatography A 1168:1-2, pages 212-224.
Crossref
Christian Nilsson, Peter Viberg, Peter Spégel, Magnus Jörntén-Karlsson, Patrik Petersson & Staffan Nilsson. (2006) Nanoparticle-Based Continuous Full Filling Capillary Electrochromatography/Electrospray Ionization-Mass Spectrometry for Separation of Neutral Compounds. Analytical Chemistry 78:17, pages 6088-6095.
Crossref
Zhong Guo, Amel A. A. Ganawi, Qiang Liu & Lin He. (2005) Nanomaterials in mass spectrometry ionization and prospects for biological application. Analytical and Bioanalytical Chemistry 384:3, pages 584-592.
Crossref
Ruijun Tian, Junming Sun, He Zhang, Mingliang Ye, Chuanhui Xie, Jin Dong, Jiwei Hu, Ding Ma, Xinhe Bao & Hanfa Zou. (2006) Large-pore mesoporous SBA-15 silica particles with submicrometer size as stationary phases for high-speed CEC separation. ELECTROPHORESIS 27:4, pages 742-748.
Crossref
Christian Nilsson & Staffan Nilsson. (2006) Nanoparticle-based pseudostationary phases in capillary electrochromatography. ELECTROPHORESIS 27:1, pages 76-83.
Crossref
I‐Ting Kuo, Yu‐Fen Huang & Huan‐Tsung Chang. (2005) Silica nanoparticles for separation of biologically active amines by capillary electrophoresis with laser‐induced native fluorescence detection. ELECTROPHORESIS 26:13, pages 2643-2651.
Crossref
John H.T. Luong, Pierre Bouvrette, Yali Liu, De-Quan Yang & Edward Sacher. (2005) Electrophoretic separation of aniline derivatives using fused silica capillaries coated with acid treated single-walled carbon nanotubes. Journal of Chromatography A 1074:1-2, pages 187-194.
Crossref
Li Yang, Elizabeth Guihen & Jeremy D. Glennon. (2005) Alkylthiol gold nanoparticles in sol-gel-based open tubular capillary electrochromatography. Journal of Separation Science 28:8, pages 757-766.
Crossref
Li Yang, Elizabeth Guihen, Justin D. Holmes, Michael Loughran, Gerard P. O'Sulliva & Jeremy D. Glennon. (2005) Gold Nanoparticle-Modified Etched Capillaries for Open-Tubular Capillary Electrochromatography. Analytical Chemistry 77:6, pages 1840-1846.
Crossref
Satish Nayak & L. Andrew Lyon. (2004) Ligand-Functionalized Core/Shell Microgels with Permselective Shells. Angewandte Chemie International Edition 43:48, pages 6706-6709.
Crossref
Satish Nayak & L. Andrew Lyon. (2004) Ligand-Functionalized Core/Shell Microgels with Permselective Shells. Angewandte Chemie 116:48, pages 6874-6877.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.