Publication Cover
Drying Technology
An International Journal
Volume 19, 2001 - Issue 8
136
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

UNIFICATION OF FRUIT WATER SORPTION ISOTHERMS USING ARTIFICIAL NEURAL NETWORKS

&
Pages 1543-1554 | Published online: 06 Feb 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

C. Lambert, D. Goujot, H. Romdhana & F. Courtois. (2016) Toward a generic approach to build up air drying models. Drying Technology 34:3, pages 346-359.
Read now
Maria M. Muñio, Emilia M. Guadix & Antonio Guadix. (2015) Modeling of Water Sorption Isotherms Characteristics of Spray-Dried Cherimoya (Annona cherimola) Purée. Particulate Science and Technology 33:3, pages 264-272.
Read now
Hongwei Wu & Stavros Avramidis. (2006) Prediction of Timber Kiln Drying Rates by Neural Networks. Drying Technology 24:12, pages 1541-1545.
Read now
Santanu Basu, U. S. Shivhare & A. S. Mujumdar. (2006) Models for Sorption Isotherms for Foods: A Review. Drying Technology 24:8, pages 917-930.
Read now

Articles from other publishers (27)

Patroklos Vareltzis, Aggelos Stergiou, Kallirhoe Kalinderi & Maria Chamilaki. (2023) Antioxidant Potential of Spray- and Freeze-Dried Extract from Oregano Processing Wastes, Using an Optimized Ultrasound-Assisted Method. Foods 12:13, pages 2628.
Crossref
Izzet Turker & Hilal Isleroglu. (2021) Modeling of adsorption isotherm of freeze‐dried mahaleb powder using artificial neural network and calculation of thermodynamic sorption properties . Journal of Food Process Engineering 44:8.
Crossref
A. K. Sharma, A. K. Bhatia, A. Kulshrestha & I. K. Sawhney. (2021) Intelligent Modeling of Moisture Sorption Isotherms in Indian Milk Products Using Computational Neuro-genetic Algorithm. SN Computer Science 2:4.
Crossref
Janmenjoy Nayak, Kanithi Vakula, Paidi Dinesh, Bighnaraj Naik & Danilo Pelusi. (2020) Intelligent food processing: Journey from artificial neural network to deep learning. Computer Science Review 38, pages 100297.
Crossref
Naveen K. Mahanti, Subir K. Chakraborty & V. Bhusana Babu. (2019) Sorption isotherms of ready‐to‐puff preconditioned brown rice: Development of classical models and artificial neural network approach. Journal of Food Process Engineering 42:6.
Crossref
Daeung Yu, Gicheol Kwon, Moojoong Kim, Young‐Mog Kim, Soo‐Im Choi, Gun‐Hee Kim & Donghwa Chung. (2019) Moisture sorption characteristics of probiotic‐fermented sea tangle powder and its thermodynamic properties. Journal of Food Processing and Preservation 43:7.
Crossref
Mohammad U.H. Joardder, Monjur Mourshed & Mahadi Hasan MasudMohammad U. H. Joardder, Monjur Mourshed & Mahadi Hasan Masud. 2019. State of Bound Water: Measurement and Significance in Food Processing. State of Bound Water: Measurement and Significance in Food Processing 7 27 .
A. K. Sharma, N. R. Panjagari & A. K. Singh. 2018. Computing, Analytics and Networks. Computing, Analytics and Networks 124 137 .
Zongying Fu, Stavros Avramidis, Jingyao Zhao & Yingchun Cai. (2017) Artificial neural network modeling for predicting elastic strain of white birch disks during drying. European Journal of Wood and Wood Products 75:6, pages 949-955.
Crossref
Kyriakos Kaderides & Athanasia M. Goula. (2017) Development and characterization of a new encapsulating agent from orange juice by-products. Food Research International 100, pages 612-622.
Crossref
Luis G. Esteban, Paloma de Palacios, María Conde, Francisco G. Fernández, Alberto García-Iruela & Marta González-Alonso. (2017) Application of artificial neural networks as a predictive method to differentiate the wood of Pinus sylvestris L. and Pinus nigra Arn subsp. salzmannii (Dunal) Franco. Wood Science and Technology 51:5, pages 1249-1258.
Crossref
Ritika Puri & Kaushik Khamrui. (2016) Effect of Temperature on Sorption Isotherms and Thermodynamics of Intermediate Moisture Category Indian Milk Product Cham-cham . Journal of Food Processing and Preservation 40:5, pages 999-1009.
Crossref
Alfa Oumar Dissa, H?l?ne Desmorieux & Jean Koulidiati. (2016) A Convective Thin Layer Drying Model with Shrinkage for Kent Mango Slices. Advances in Chemical Engineering and Science 06:01, pages 20-28.
Crossref
Patchimaporn Udomkun, Dimitrios Argyropoulos, Marcus Nagle, Busarakorn Mahayothee & Joachim Müller. (2015) Sorption behaviour of papayas as affected by compositional and structural alterations from osmotic pretreatment and drying. Journal of Food Engineering 157, pages 14-23.
Crossref
A. K. Sharma & I. K. Sawhney. (2013) Modelling moisture sorption characteristics in dried acid casein using connectionist paradigm vis-à-vis classical methods. Journal of Food Science and Technology 52:1, pages 151-160.
Crossref
Nadia Djendoubi Mrad, Catherine Bonazzi, Nourhène Boudhrioua, Nabil Kechaou & Francis Courtois. (2012) Influence of sugar composition on water sorption isotherms and on glass transition in apricots. Journal of Food Engineering 111:2, pages 403-411.
Crossref
E. Barati & J.A. Esfahani. (2011) A new solution approach for simultaneous heat and mass transfer during convective drying of mango. Journal of Food Engineering 102:4, pages 302-309.
Crossref
Thomas J. Glezakos, Theodore A. Tsiligiridis, Lazaros S. Iliadis, Constantine P. Yialouris, Fotis P. Maris & Konstantinos P. Ferentinos. (2009) Feature extraction for time-series data: An artificial neural network evolutionary training model for the management of mountainous watersheds. Neurocomputing 73:1-3, pages 49-59.
Crossref
Luis García Esteban, Francisco García Fernández & Paloma de Palacios. (2009) MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing. Computers & Structures 87:21-22, pages 1360-1365.
Crossref
R. Moreira, F. Chenlo & M.D. Torres. (2009) Simplified algorithm for the prediction of water sorption isotherms of fruits, vegetables and legumes based upon chemical composition. Journal of Food Engineering 94:3-4, pages 334-343.
Crossref
Hélène Desmorieux, Célia Diallo & Yézouma Coulibaly. (2008) Operation simulation of a convective and semi-industrial mango dryer. Journal of Food Engineering 89:2, pages 119-127.
Crossref
A.O. Dissa, H. Desmorieux, J. Bathiebo & J. Koulidiati. (2008) Convective drying characteristics of Amelie mango (Mangifera Indica L. cv. ‘Amelie’) with correction for shrinkage. Journal of Food Engineering 88:4, pages 429-437.
Crossref
Athanasia M. Goula, Thodoris D. Karapantsios, Dimitris S. Achilias & Konstantinos G. Adamopoulos. (2008) Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering 85:1, pages 73-83.
Crossref
Lazaros S. Iliadis & Fotis Maris. (2007) An Artificial Neural Network model for mountainous water-resources management: The case of Cyprus mountainous watersheds. Environmental Modelling & Software 22:7, pages 1066-1072.
Crossref
Susana Simal, Antoni Femenia, África Castell-Palou & Carmen Rosselló. (2007) Water desorption thermodynamic properties of pineapple. Journal of Food Engineering 80:4, pages 1293-1301.
Crossref
Stavros Avramidis & Hongwei Wu. (2006) Artificial neural network and mathematical modeling comparative analysis of nonisothermal diffusion of moisture in woodBestimmung der nicht isothermischen Feuchtediffusion in Holz mittels eines neuronalen Netzwerks im Vergleich zu einer mathematischen Modellierung. Holz als Roh- und Werkstoff 65:2, pages 89-93.
Crossref
Stavros Avramidis & Lazaros Iliadis. (2005) Wood-water sorption isotherm prediction with artificial neural networks: A preliminary study. Holzforschung 59:3, pages 336-341.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.