471
Views
58
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of heterogeneous propellant combustion by a level set method

, &
Pages 227-254 | Received 01 Jul 2003, Published online: 15 May 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

X. Wang, K. Hossain & T.L. Jackson. (2008) The three-dimensional numerical simulation of aluminized composite solid propellant combustion. Combustion Theory and Modelling 12:1, pages 45-71.
Read now
IgorR. Kuznetsov & D. Scott Stewart. (2007) Curvilinear deflagration of energetic materials. Combustion Theory and Modelling 11:4, pages 615-637.
Read now
Vincent Giovangigli, Nicolas Meynet & Mitchell Smooke. (2006) Application of continuation techniques to ammonium perchlorate plane flames. Combustion Theory and Modelling 10:5, pages 771-798.
Read now
Yevgenii Rastigejev & Moshe Matalon. (2006) Numerical simulation of flames as gas-dynamic discontinuities. Combustion Theory and Modelling 10:3, pages 459-481.
Read now
X. Wang & T. Jackson. (2005) The numerical simulation of two-dimensional aluminized composite solid propellent combustion. Combustion Theory and Modelling 9:1, pages 171-197.
Read now

Articles from other publishers (53)

Maycon Meier, Emma Schmidt, Patrick Martinez, J. Matt Quinlan & Brandon Runnels. (2024) Diffuse interface method for solid composite propellant ignition and regression. Combustion and Flame 259, pages 113120.
Crossref
Yu Cang & Lipo Wang. (2024) Understanding AP/HTPB composite propellant combustion from new perspectives. Combustion and Flame 259, pages 113108.
Crossref
Xiang Lv, Meng Zhang, Wen Ao, Zhiqiang Lin, Peijin Liu & Yongjie Cao. (2023) AP/HTPB combustion response simulation with a new equivalent linear system method. Combustion and Flame 247, pages 112486.
Crossref
Baburaj Kanagarajan, John M. Quinlan & Brandon Runnels. (2022) A diffuse interface method for solid-phase modeling of regression behavior in solid composite propellants. Combustion and Flame 242, pages 112219.
Crossref
Kurt Maute & Subhayan De. (2022) Shape and material optimization of problems with dynamically evolving interfaces applied to solid rocket motors. Structural and Multidisciplinary Optimization 65:8.
Crossref
Yanrong Zhang, Yu Cang, Shuo Yang & Lipo Wang. (2022) Heterogeneous propellant combustion with conjugated interface conditions. Computers & Fluids 240, pages 105397.
Crossref
Yu Cang, Yue Hu, Lipo Wang & Yongxing Shen. (2021) Numerical scheme solving the temperature of the interface between gas and heterogeneous solid with phase change. International Journal for Numerical Methods in Engineering 123:4, pages 1036-1056.
Crossref
Baburaj Kanagarajan, Matt Quinlan & Brandon Runnels. (2022) Phase field modeling of solid phase AP/HTPB to determine the effect of particle distribution on regression rate. Phase field modeling of solid phase AP/HTPB to determine the effect of particle distribution on regression rate.
F. Ponti, S. Mini, L. Fadigati, V. Ravaglioli, A. Annovazzi & V. Garreffa. (2021) Effects of inclusions on the performance of a solid rocket motor. Acta Astronautica 189, pages 283-297.
Crossref
Tadbhagya Kumar & Thomas L. Jackson. (2021) Three-dimensional thermo-mechanical simulations of heterogeneous solid propellants. Combustion and Flame 233, pages 111590.
Crossref
Tadbhagya Kumar, Chris H. Rycroft & Thomas L. Jackson. (2020) Eulerian thermo-mechanical simulations of heterogeneous solid propellants using an approximate projection method. Combustion and Flame 219, pages 198-211.
Crossref
Brian T. Bojko, Matthew L. Gross & Thomas L. Jackson. (2020) Investigating Dimensional Effects on Predicting Burning Rates of Heterogeneous Solid Propellants. AIAA Journal 58:4, pages 1724-1732.
Crossref
Claresta Dennis & Brian Bojko. (2019) On the combustion of heterogeneous AP/HTPB composite propellants: A review. Fuel 254, pages 115646.
Crossref
Kun Luo, Changxiao Shao, Min Chai & Jianren Fan. (2019) Level set method for atomization and evaporation simulations. Progress in Energy and Combustion Science 73, pages 65-94.
Crossref
Zhen‐W. Ye & Yong‐G. Yu. (2019) Numerical Simulation and Unsteady Combustion Model of AP/HTPB Propellant under Depressurization by Rotation. Propellants, Explosives, Pyrotechnics 44:4, pages 493-504.
Crossref
Brian T. Bojko, Matthew Gross & Thomas L. Jackson. (2019) Investigating Dimensional Effects on Predicting Burning Rates of Heterogeneous Solid Propellants. Investigating Dimensional Effects on Predicting Burning Rates of Heterogeneous Solid Propellants.
Changxiao Shao, Kun Luo, Min Chai, Haiou Wang & Jianren Fan. (2018) A computational framework for interface-resolved DNS of simultaneous atomization, evaporation and combustion. Journal of Computational Physics 371, pages 751-778.
Crossref
Alexandre Mangeot, Mame William-Louis & Philippe Gillard. (2018) Static and moving solid/gas interface modeling in a hybrid rocket engine. Acta Astronautica 148, pages 89-98.
Crossref
Javed Shaikh, Atul Sharma & Rajneesh Bhardwaj. (2018) On comparison of the sharp-interface and diffuse-interface level set methods for 2D capillary or/and gravity induced flows. Chemical Engineering Science 176, pages 77-95.
Crossref
Stany Gallier, Antoine Ferrand & Mathieu Plaud. (2016) Three-dimensional simulations of ignition of composite solid propellants. Combustion and Flame 173, pages 2-15.
Crossref
Xiang Lyu, Xue-feng Pang, Xiao Liu, Po Wang & Yang Liu. (2016) Study on the Thermal Decomposition Characteristics of AP/HTPB Composite Propellant under High Heat Flux. Study on the Thermal Decomposition Characteristics of AP/HTPB Composite Propellant under High Heat Flux.
Hou-Wen Yang, Yong-Gang Yu, Rui Ye, Xiao-Chun Xue & Wen-Feng Li. (2016) Cook-off test and numerical simulation of AP/HTPB composite solid propellant. Journal of Loss Prevention in the Process Industries 40, pages 1-9.
Crossref
D. Gueyffier, F. X. Roux, Y. Fabignon, G. Chaineray, N. Lupoglazoff, F. Vuillot, J. Hijlkema & F. Alauzet. (2015) Accurate Computation of Grain Burning Coupled with Flow Simulation in Rocket Chamber. Journal of Propulsion and Power 31:6, pages 1761-1776.
Crossref
Yao-Hsin Hwang & Chung-Hua Chiang. (2015) Simple Surface-Tracking Methods for Grain Burnback Analysis. Journal of Propulsion and Power 31:5, pages 1436-1444.
Crossref
Kanysh O. SABDENOV, Johann DUECK & Erzada MAIRA. (2015) Limits of steady burning propellants in the phenomenological theory using effective initial temperature. Journal of Thermal Science and Technology 10:1, pages JTST0006-JTST0006.
Crossref
Y.J. Cao, Y.G. Yu & R. Ye. (2015) Numerical analysis of AP/HTPB composite propellant combustion under rapid depressurization. Applied Thermal Engineering 75, pages 145-153.
Crossref
Denis Gueyffier, Francois-Xavier Roux, Yves Fabignon, Gilles Chaineray, Nicolas Lupoglazoff, Francois Vuillot & Frederic Alauzet. (2014) High-order computation of burning propellant surface and simulation of fluid flow in solid rocket chamber. High-order computation of burning propellant surface and simulation of fluid flow in solid rocket chamber.
Ryan W. Houim & Kenneth K. Kuo. (2013) A ghost fluid method for compressible reacting flows with phase change. Journal of Computational Physics 235, pages 865-900.
Crossref
Thomas L. Jackson. (2012) Modeling of Heterogeneous Propellant Combustion: A Survey. AIAA Journal 50:5, pages 993-1006.
Crossref
You Quan Liu, Kang Xue Yin, Fu Ting Bao, Yang Liu & En Hua Wu. (2012) Efficient Simulation of Grain Burning Surface Regression. Advanced Materials Research 466-467, pages 314-318.
Crossref
Don Estep, Michael Pernice, Simon Tavener & Haiying Wang. (2011) A posteriori error analysis for a cut cell finite volume method. Computer Methods in Applied Mechanics and Engineering 200:37-40, pages 2768-2781.
Crossref
Jung Choi, Mehtap Cakmak & Suresh Menon. (2011) Simulations of Composite Solid Propellant Combustion Using Adaptive Mesh Refinement. Simulations of Composite Solid Propellant Combustion Using Adaptive Mesh Refinement.
Thomas L. Jackson & Joanna M. Austin. 2010. Encyclopedia of Aerospace Engineering. Encyclopedia of Aerospace Engineering.
D. Shane Stafford & Thomas L. Jackson. (2010) Using level sets for creating virtual random packs of non-spherical convex shapes. Journal of Computational Physics 229:9, pages 3295-3315.
Crossref
Matthew L. Gross & Merrill W. Beckstead. (2010) Diffusion flame calculations for composite propellants predicting particle-size effects. Combustion and Flame 157:5, pages 864-873.
Crossref
Jung Choi & Suresh Menon. (2010) Simulations of Composite Solid Propellant Combustion With and Without Internal Burning. Simulations of Composite Solid Propellant Combustion With and Without Internal Burning.
Thomas Jackson, Ju Zhang & V. Topalian. (2010) Erosive Burning of Solid Propellants. Erosive Burning of Solid Propellants.
Ning He, Cong Xiang, Bin Qin & Qi Zhang. 2010. High Performance Computing and Applications. High Performance Computing and Applications 161 168 .
K.R. Srinivasan, K. Matouš, P.H. Geubelle & T.L. Jackson. (2009) Thermomechanical modeling of regressing heterogeneous solid propellants. Journal of Computational Physics 228:21, pages 7883-7901.
Crossref
Amir Isfahani, Ju Zhang & Thomas Jackson. (2009) Erosive Burning of Homogeneous and Heterogeneous Solid Propellants. Erosive Burning of Homogeneous and Heterogeneous Solid Propellants.
Jung Choi & Suresh Menon. (2009) Solid Propellant Combustion with Surface Regression by Coupled Gas-Solid Approach. Solid Propellant Combustion with Surface Regression by Coupled Gas-Solid Approach.
Matt Jackson, Michelle L. Pantoya & Walt Gill. (2008) Characterization of a gas burner to simulate a propellant flame and evaluate aluminum particle combustion. Combustion and Flame 153:1-2, pages 58-70.
Crossref
Tim Bazyn, Herman Krier, Nick Glumac, Nagraj Shankar, X. Wang & Thomas L. Jackson. (2007) Decomposition of Aluminum Hydride Under Solid Rocket Motor Conditions. Journal of Propulsion and Power 23:2, pages 457-464.
Crossref
Sébastien Tanguy, Thibaut Ménard & Alain Berlemont. (2007) A Level Set Method for vaporizing two-phase flows. Journal of Computational Physics 221:2, pages 837-853.
Crossref
T. L. Jackson, J. Buckmaster & X. Wang. (2007) Modeling of Propellants Containing Ultrafine Aluminum. Journal of Propulsion and Power 23:1, pages 158-165.
Crossref
M. W. Beckstead. (2006) Recent progress in modeling solid propellant combustion. Combustion, Explosion, and Shock Waves 42:6, pages 623-641.
Crossref
Matthew Gross, Scott Felt & Merrill Beckstead. (2006) Two-dimensional Modeling of AP Composite Propellants with Detailed Kinetics: Particle Size Effects. Two-dimensional Modeling of AP Composite Propellants with Detailed Kinetics: Particle Size Effects.
L. Massa, T. L. Jackson & J. Buckmaster. (2005) New Kinetics for a Model of Heterogeneous Propellant Combustion. Journal of Propulsion and Power 21:5, pages 914-924.
Crossref
T. L. Jackson, F. Najjar & J. Buckmaster. (2005) New Aluminum Agglomeration Models and Their Use in Solid-Propellant-Rocket Simularions. Journal of Propulsion and Power 21:5, pages 925-936.
Crossref
Yevgenii Rastigejev & Moshe Matalon. (2005) A Numerical Study of the Nonlinear Development of Hydrodynamically Unstable Premixed Flames. A Numerical Study of the Nonlinear Development of Hydrodynamically Unstable Premixed Flames.
John Buckmaster, Thomas Jackson, Luca Massa, F. Najjar & Xiaojian Wang. (2005) The Current State of Heterogeneous Propellant Combustion Modeling. The Current State of Heterogeneous Propellant Combustion Modeling.
Charles K. Westbrook, Yasuhiro Mizobuchi, Thierry J. Poinsot, Phillip J. Smith & Jürgen Warnatz. (2005) Computational combustion. Proceedings of the Combustion Institute 30:1, pages 125-157.
Crossref
L. Massa, T. L. Jackson & J. Buckmaster. (2004) Using Hetergeneous Propellant Burning Simulations as Subgrid Components of Rocket Simulations. AIAA Journal 42:9, pages 1889-1900.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.