13
Views
107
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Analysis of Spt7 Function in the Saccharomyces cerevisiae SAGA Coactivator Complex

&
Pages 5367-5379 | Received 15 Mar 2002, Accepted 02 May 2002, Published online: 27 Mar 2023

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (18)

Alan C. M. Cheung & Luis Miguel Díaz-Santín. (2019) Share and share alike: the role of Tra1 from the SAGA and NuA4 coactivator complexes. Transcription 10:1, pages 37-43.
Read now
Ivanka Kamenova, Linda Warfield & Steven Hahn. (2014) Mutations on the DNA Binding Surface of TBP Discriminate between Yeast TATA and TATA-Less Gene Transcription. Molecular and Cellular Biology 34:15, pages 2929-2943.
Read now
Sandra Jacobson & Lorraine Pillus. (2009) The SAGA Subunit Ada2 Functions in Transcriptional Silencing. Molecular and Cellular Biology 29:22, pages 6033-6045.
Read now
Zita Nagy, Anne Riss, Christophe Romier, Xavier le Guezennec, Ashok R. Dongre, Meritxell Orpinell, Jiahuai Han, Henk Stunnenberg & Làszlò Tora. (2009) The Human SPT20-Containing SAGA Complex Plays a Direct Role in the Regulation of Endoplasmic Reticulum Stress-Induced Genes. Molecular and Cellular Biology 29:6, pages 1649-1660.
Read now
Stefano Vernarecci, Prisca Ornaghi, AnaCristina Bâgu, Enrico Cundari, Paola Ballario & Patrizia Filetici. (2008) Gcn5p Plays an Important Role in Centromere Kinetochore Function in Budding Yeast. Molecular and Cellular Biology 28:3, pages 988-996.
Read now
Xiaohui Liu, Marina Vorontchikhina, Yuan-Liang Wang, Francesco Faiola & Ernest Martinez. (2008) STAGA Recruits Mediator to the MYC Oncoprotein To Stimulate Transcription and Cell Proliferation. Molecular and Cellular Biology 28:1, pages 108-121.
Read now
Mary C. Thomas & Cheng-Ming Chiang. (2006) The General Transcription Machinery and General Cofactors. Critical Reviews in Biochemistry and Molecular Biology 41:3, pages 105-178.
Read now
Chhabi K. Govind, Sungpil Yoon, Hongfang Qiu, Sudha Govind & Alan G. Hinnebusch. (2005) Simultaneous Recruitment of Coactivators by Gcn4p Stimulates Multiple Steps of Transcription In Vivo. Molecular and Cellular Biology 25:13, pages 5626-5638.
Read now
Hongfang Qiu, Cuihua Hu, Fan Zhang, Gwo Jiunn Hwang, Mark J. Swanson, Cheunchit Boonchird & Alan G. Hinnebusch. (2005) Interdependent Recruitment of SAGA and Srb Mediator by Transcriptional Activator Gcn4p. Molecular and Cellular Biology 25:9, pages 3461-3474.
Read now
Evi Soutoglou, Màté A. Demény, Elisabeth Scheer, Giulia Fienga, Paolo Sassone-Corsi & Làszlò Tora. (2005) The Nuclear Import of TAF10 Is Regulated by One of Its Three Histone Fold Domain-Containing Interaction Partners. Molecular and Cellular Biology 25:10, pages 4092-4104.
Read now
Donald M. Prather, Erica Larschan & Fred Winston. (2005) Evidence that the Elongation Factor TFIIS Plays a Role in Transcription Initiation at GAL1 in Saccharomyces cerevisiae. Molecular and Cellular Biology 25:7, pages 2650-2659.
Read now
Kristin Ingvarsdottir, Nevan J. Krogan, N. C. Tolga Emre, Anastasia Wyce, Natalie J. Thompson, Andrew Emili, Timothy R. Hughes, Jack F. Greenblatt & Shelley L. Berger. (2005) H2B Ubiquitin Protease Ubp8 and Sgf11 Constitute a Discrete Functional Module within the Saccharomyces cerevisiae SAGA Complex. Molecular and Cellular Biology 25:3, pages 1162-1172.
Read now
Erica Larschan & Fred Winston. (2005) The Saccharomyces cerevisiae Srb8-Srb11 Complex Functions with the SAGA Complex during Gal4-Activated Transcription. Molecular and Cellular Biology 25:1, pages 114-123.
Read now
David W. Powell, Connie M. Weaver, Jennifer L. Jennings, K. Jill McAfee, Yue He, P. Anthony Weil & Andrew J. Link. (2004) Cluster Analysis of Mass Spectrometry Data Reveals a Novel Component of SAGA. Molecular and Cellular Biology 24:16, pages 7249-7259.
Read now
David Hess, Bingsheng Liu, Nadia R. Roan, Rolf Sternglanz & Fred Winston. (2004) Spt10-Dependent Transcriptional Activation in Saccharomyces cerevisiae Requires both the Spt10 Acetyltransferase Domain and Spt21. Molecular and Cellular Biology 24:1, pages 135-143.
Read now
Sungpil Yoon, Hongfang Qiu, Mark J. Swanson & Alan G. Hinnebusch. (2003) Recruitment of SWI/SNF by Gcn4p Does Not Require Snf2p or Gcn5p but Depends Strongly on SWI/SNF Integrity, SRB Mediator, and SAGA. Molecular and Cellular Biology 23:23, pages 8829-8845.
Read now
Slobodan Barbaric, Hans Reinke & Wolfram Hürz. (2003) Multiple Mechanistically Distinct Functions of SAGA at the PHO5 Promoter. Molecular and Cellular Biology 23:10, pages 3468-3476.
Read now
Marilyn G. Pray-Grant, David Schieltz, Stacey J. McMahon, Jennifer M. Wood, Erin L. Kennedy, Richard G. Cook, Jerry L. Workman, John R. Yates$suffix/text()$suffix/text() & Patrick A. Grant. (2002) The Novel SLIK Histone Acetyltransferase Complex Functions in the Yeast Retrograde Response Pathway. Molecular and Cellular Biology 22:24, pages 8774-8786.
Read now

Articles from other publishers (89)

Tulay TURGUT GENC. (2022) SAGA COMPLEX ESSENTIAL FOR THE REGULATION OF GENES INVOLVED IN TREHALOSE METABOLISM. Trakya University Journal of Natural Sciences.
Crossref
Veronique Fischer, Vincent Hisler, Elisabeth Scheer, Elisabeth Lata, Bastien Morlet, Damien Plassard, Dominique Helmlinger, Didier Devys, László Tora & Stéphane D Vincent. (2022) SUPT3H-less SAGA coactivator can assemble and function without significantly perturbing RNA polymerase II transcription in mammalian cells. Nucleic Acids Research 50:14, pages 7972-7990.
Crossref
Saima Rashid, Tuana Oliveira Correia-Mesquita, Pablo Godoy, Raha Parvizi Omran & Malcolm Whiteway. (2022) SAGA Complex Subunits in Candida albicans Differentially Regulate Filamentation, Invasiveness, and Biofilm Formation. Frontiers in Cellular and Infection Microbiology 12.
Crossref
Qi Geng, Huan Li, Dan Wang, Ruo-Cheng Sheng, He Zhu, Steven J. Klosterman, Krishna V. Subbarao, Jie-Yin Chen, Feng-Mao Chen & Dan-Dan Zhang. (2022) The Verticillium dahliae Spt-Ada-Gcn5 Acetyltransferase Complex Subunit Ada1 Is Essential for Conidia and Microsclerotia Production and Contributes to Virulence. Frontiers in Microbiology 13.
Crossref
Ying-Jiun C. Chen & Sharon Y. R. Dent. (2021) Conservation and diversity of the eukaryotic SAGA coactivator complex across kingdoms. Epigenetics & Chromatin 14:1.
Crossref
Jelly H. M. Soffers, Sergio G-M Alcantara, Xuanying Li, Wanqing Shao, Christopher W. Seidel, Hua Li, Julia Zeitlinger, Susan M. Abmayr & Jerry L. Workman. (2021) The SAGA core module is critical during Drosophila oogenesis and is broadly recruited to promoters. PLOS Genetics 17:11, pages e1009668.
Crossref
Veronique Fischer, Damien Plassard, Tao Ye, Bernardo Reina-San-Martin, Matthieu Stierle, Laszlo Tora & Didier Devys. (2021) The related coactivator complexes SAGA and ATAC control embryonic stem cell self-renewal through acetyltransferase-independent mechanisms. Cell Reports 36:8, pages 109598.
Crossref
Xue Cheng, Valérie Côté & Jacques Côté. (2021) NuA4 and SAGA acetyltransferase complexes cooperate for repair of DNA breaks by homologous recombination. PLOS Genetics 17:7, pages e1009459.
Crossref
Suji Lim, Hyojeong Ahn, Ruxin Duan, Yan Liu, Hong-Yeoul Ryu & Seong Hoon Ahn. (2021) The Spt7 subunit of the SAGA complex is required for the regulation of lifespan in both dividing and nondividing yeast cells. Mechanisms of Ageing and Development 196, pages 111480.
Crossref
Adam Ben‐Shem, Gabor Papai & Patrick Schultz. (2020) Architecture of the multi‐functional SAGA complex and the molecular mechanism of holding TBP. The FEBS Journal 288:10, pages 3135-3147.
Crossref
Sannie J. Culbertson & Michael A. Shogren-Knaak. (2021) Mechanisms of stimulation of SAGA-mediated nucleosome acetylation by a transcriptional activator. Biochemistry and Biophysics Reports 25, pages 100884.
Crossref
Patrick A. Grant, Fred Winston & Shelley L. Berger. (2021) The biochemical and genetic discovery of the SAGA complex. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1864:2, pages 194669.
Crossref
Carme Nuño-Cabanes, Varinia García-Molinero, Manuel Martín-Expósito, María-Eugenia Gas, Paula Oliete-Calvo, Encar García-Oliver, María de la Iglesia-Vayá & Susana Rodríguez-Navarro. (2020) SAGA–CORE subunit Spt7 is required for correct Ubp8 localization, chromatin association and deubiquitinase activity. Epigenetics & Chromatin 13:1.
Crossref
Jelly H.M. Soffers & Jerry L. Workman. (2020) The SAGA chromatin-modifying complex: the sum of its parts is greater than the whole. Genes & Development 34:19-20, pages 1287-1303.
Crossref
Youngseo Cheon, Harim Kim, Kyubin Park, Minhoo Kim & Daeyoup Lee. (2020) Dynamic modules of the coactivator SAGA in eukaryotic transcription. Experimental & Molecular Medicine 52:7, pages 991-1003.
Crossref
Wei Shao, Zhan Ding, Zeng-Zhang Zheng, Ji-Jia Shen, Yu-Xian Shen, Jia Pu, Yu-Jie Fan, Charles C Query & Yong-Zhen Xu. (2020) Prp5−Spt8/Spt3 interaction mediates a reciprocal coupling between splicing and transcription. Nucleic Acids Research 48:11, pages 5799-5813.
Crossref
Gabor Papai, Alexandre Frechard, Olga Kolesnikova, Corinne Crucifix, Patrick Schultz & Adam Ben-Shem. (2020) Structure of SAGA and mechanism of TBP deposition on gene promoters. Nature 577:7792, pages 711-716.
Crossref
Haibo Wang, Christian Dienemann, Alexandra Stützer, Henning Urlaub, Alan C. M. Cheung & Patrick Cramer. (2020) Structure of the transcription coactivator SAGA. Nature 577:7792, pages 717-720.
Crossref
Alberto Elías-Villalobos, Damien Toullec, Céline Faux, Martial Séveno & Dominique Helmlinger. (2019) Chaperone-mediated ordered assembly of the SAGA and NuA4 transcription co-activator complexes in yeast. Nature Communications 10:1.
Crossref
Anthony Rössl, Alix Denoncourt, Mong-Shang Lin & Michael Downey. (2019) A synthetic non-histone substrate to study substrate targeting by the Gcn5 HAT and sirtuin HDACs. Journal of Biological Chemistry 294:16, pages 6227-6239.
Crossref
Varinia García-Molinero, José García-Martínez, Rohit Reja, Pedro Furió-Tarí, Oreto Antúnez, Vinesh Vinayachandran, Ana Conesa, B. Franklin Pugh, José E. Pérez-Ortín & Susana Rodríguez-Navarro. (2018) The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally. Epigenetics & Chromatin 11:1.
Crossref
Chitvan Mittal, Sannie J. Culbertson & Michael A. Shogren-Knaak. (2018) Distinct requirements of linker DNA and transcriptional activators in promoting SAGA-mediated nucleosome acetylation. Journal of Biological Chemistry 293:35, pages 13736-13749.
Crossref
Matthew D Berg, Julie Genereaux, Jim Karagiannis & Christopher J Brandl. (2018) The Pseudokinase Domain of Saccharomyces cerevisiae Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes . G3 Genes|Genomes|Genetics 8:6, pages 1943-1957.
Crossref
Rashmi Dahiya & Krishnamurthy Natarajan. (2018) Mutational analysis of TAF 6 revealed the essential requirement of the histone‐fold domain and the HEAT repeat domain for transcriptional activation . The FEBS Journal 285:8, pages 1491-1510.
Crossref
Thomas Laboucarié, Dylane Detilleux, Ricard A Rodriguez‐Mias, Céline Faux, Yves Romeo, Mirita Franz‐Wachtel, Karsten Krug, Boris Maček, Judit Villén, Janni Petersen & Dominique Helmlinger. (2017) TORC1 and TORC2 converge to regulate the SAGA co‐activator in response to nutrient availability. EMBO reports 18:12, pages 2197-2218.
Crossref
Gisèle Dewhurst-Maridor, Daniel Abegg, Fabrice P. A. David, Jacques Rougemont, Cameron C. Scott, Alexander Adibekian & Howard Riezman. (2017) The SAGA complex, together with transcription factors and the endocytic protein Rvs167p, coordinates the reprofiling of gene expression in response to changes in sterol composition in Saccharomyces cerevisiae . Molecular Biology of the Cell 28:20, pages 2637-2649.
Crossref
Luis Miguel Díaz-Santín, Natasha Lukoyanova, Emir Aciyan & Alan CM Cheung. (2017) Cryo-EM structure of the SAGA and NuA4 coactivator subunit Tra1 at 3.7 angstrom resolution. eLife 6.
Crossref
Shigeki Nagai, Ralph E. Davis, Pierre Jean Mattei, Kyle Patrick Eagen & Roger D. Kornberg. (2017) Chromatin potentiates transcription. Proceedings of the National Academy of Sciences 114:7, pages 1536-1541.
Crossref
Claudia Canzonetta, Manuela Leo, Salvatore Rocco Guarino, Arianna Montanari, Silvia Francisci & Patrizia Filetici. (2016) SAGA complex and Gcn5 are necessary for respiration in budding yeast. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1863:12, pages 3160-3168.
Crossref
Monika Schmoll, Christoph Dattenböck, Nohemí Carreras-Villaseñor, Artemio Mendoza-Mendoza, Doris Tisch, Mario Ivan Alemán, Scott E. Baker, Christopher Brown, Mayte Guadalupe Cervantes-Badillo, José Cetz-Chel, Gema Rosa Cristobal-Mondragon, Luis Delaye, Edgardo Ulises Esquivel-Naranjo, Alexa Frischmann, Jose de Jesus Gallardo-Negrete, Monica García-Esquivel, Elida Yazmin Gomez-Rodriguez, David R. Greenwood, Miguel Hernández-Oñate, Joanna S. Kruszewska, Robert Lawry, Hector M. Mora-Montes, Tania Muñoz-Centeno, Maria Fernanda Nieto-Jacobo, Guillermo Nogueira Lopez, Vianey Olmedo-Monfil, Macario Osorio-Concepcion, Sebastian Piłsyk, Kyle R. Pomraning, Aroa Rodriguez-Iglesias, Maria Teresa Rosales-Saavedra, J. Alejandro Sánchez-Arreguín, Verena Seidl-Seiboth, Alison Stewart, Edith Elena Uresti-Rivera, Chih-Li Wang, Ting-Fang Wang, Susanne Zeilinger, Sergio Casas-Flores & Alfredo Herrera-Estrella. (2016) The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiology and Molecular Biology Reviews 80:1, pages 205-327.
Crossref
Xiaolong Deng, Huan Zhou, Guiping Zhang, Wenchao Wang, Langyong Mao, Xing Zhou, Yao Yu & Hong Lu. (2015) Sgf73, a subunit of SAGA complex, is required for the assembly of RITS complex in fission yeast. Scientific Reports 5:1.
Crossref
Dheva Setiaputra, James D. Ross, Shan Lu, Derrick T. Cheng, Meng-Qiu Dong & Calvin K. Yip. (2015) Conformational Flexibility and Subunit Arrangement of the Modular Yeast Spt-Ada-Gcn5 Acetyltransferase Complex. Journal of Biological Chemistry 290:16, pages 10057-10070.
Crossref
Yan Han, Jie Luo, Jeffrey Ranish & Steven Hahn. (2014) Architecture of the S accharomyces cerevisiae SAGA transcription coactivator complex . The EMBO Journal 33:21, pages 2534-2546.
Crossref
Huaxiong Yao, Mengxiao Cui, Wei Li, Ziwei Wang & Yuxiang Zhu. (2014) Correlating interactions with gene expressions to detect protein complexes in protein interaction networks. Correlating interactions with gene expressions to detect protein complexes in protein interaction networks.
Feng-Shu Hsieh, Nai-Tzu Chen, Ya-Li Yao, Shi-Yun Wang, Jeremy J.W. Chen, Chien-Chen Lai & Wen-Ming Yang. (2014) The transcriptional repression activity of STAF65γ is facilitated by promoter tethering and nuclear import of class IIa histone deacetylases. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1839:7, pages 579-591.
Crossref
Chitvan Mittal, Melissa J. Blacketer & Michael A. Shogren-Knaak. (2014) Nucleosome acetylation sequencing to study the establishment of chromatin acetylation. Analytical Biochemistry 457, pages 51-58.
Crossref
Bingkun Lei, Nan Zhou, Yuchen Guo, Wenqi Zhao, Yan-Wen Tan, Yao Yu & Hong Lu. (2014) Septin ring assembly is regulated by Spt20, a structural subunit of SAGA complex. Journal of Cell Science.
Crossref
Kazuma Kamata, Akira Hatanaka, Gayatri Goswami, Kaori Shinmyozu, Jun-ichi Nakayama, Takeshi Urano, Masanori Hatashita, Hiroyuki Uchida & Masaya Oki. (2013) C-terminus of the Sgf73 subunit of SAGA and SLIK is important for retention in the larger complex and for heterochromatin boundary function. Genes to Cells 18:9, pages 823-837.
Crossref
Hua-Xiong Yao, Yan Yang & Xiao-Long Li. (2013) Detecting protein complexes based on relevancy from protein interaction networks. Interdisciplinary Sciences: Computational Life Sciences 5:3, pages 167-174.
Crossref
Lei Shi & Benjamin P. Tu. (2013) Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae . Proceedings of the National Academy of Sciences 110:18, pages 7318-7323.
Crossref
Huaxiong Yao, Yan Yang & XiaoLong Li. (2012) Relevance judgment algorithm for detecting protein complexes from protein interaction networks. Relevance judgment algorithm for detecting protein complexes from protein interaction networks.
Gabrielle A. Josling, Shamista A. Selvarajah, Michaela Petter & Michael F. Duffy. (2012) The Role of Bromodomain Proteins in Regulating Gene Expression. Genes 3:2, pages 320-343.
Crossref
Gianpiero Spedale, H.Th. Marc Timmers & W.W.M. Pim Pijnappel. (2012) ATAC-king the complexity of SAGA during evolution. Genes & Development 26:6, pages 527-541.
Crossref
Oliver J Rando & Fred Winston. (2012) Chromatin and Transcription in Yeast. Genetics 190:2, pages 351-387.
Crossref
Laura Carreto, Maria F Eiriz, Inês Domingues, Dorit Schuller, Gabriela R Moura & Manuel AS Santos. (2011) Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains. BMC Genomics 12:1.
Crossref
Steven Hahn & Elton T Young. (2011) Transcriptional Regulation in Saccharomyces cerevisiae : Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators . Genetics 189:3, pages 705-736.
Crossref
Lina Barreto, David Canadell, Silvia Petrezsélyová, Clara Navarrete, Lydie Marešová, Jorge Peréz-Valle, Rito Herrera, Iván Olier, Jesús Giraldo, Hana Sychrová, Lynne Yenush, José Ramos & Joaquín Ariño. (2011) A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae. Eukaryotic Cell 10:9, pages 1241-1250.
Crossref
Chuanbing Bian, Chao Xu, Jianbin Ruan, Kenneth K Lee, Tara L Burke, Wolfram Tempel, Dalia Barsyte, Jing Li, Minhao Wu, Bo O Zhou, Brian E Fleharty, Ariel Paulson, Abdellah Allali-Hassani, Jin-Qiu Zhou, Georges Mer, Patrick A Grant, Jerry L Workman, Jianye Zang & Jinrong Min. (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. The EMBO Journal 30:14, pages 2829-2842.
Crossref
Dominique Helmlinger, Samuel Marguerat, Judit Villén, Danielle L Swaney, Steven P Gygi, Jürg Bähler & Fred Winston. (2011) Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. The EMBO Journal 30:14, pages 2843-2852.
Crossref
Rana Pratap Singh, Himanshu K. Prasad, Ishani Sinha, Neha Agarwal & Krishnamurthy Natarajan. (2011) Cap2-HAP Complex Is a Critical Transcriptional Regulator That Has Dual but Contrasting Roles in Regulation of Iron Homeostasis in Candida albicans. Journal of Biological Chemistry 286:28, pages 25154-25170.
Crossref
Ling Cai, Benjamin M. Sutter, Bing Li & Benjamin P. Tu. (2011) Acetyl-CoA Induces Cell Growth and Proliferation by Promoting the Acetylation of Histones at Growth Genes. Molecular Cell 42:4, pages 426-437.
Crossref
Sukesh R. Bhaumik. (2011) Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1809:2, pages 97-108.
Crossref
Stephen M. T. Hoke, A. Irina Mutiu, Julie Genereaux, Stephanie Kvas, Michael Buck, Michael Yu, Gregory B. Gloor & Christopher J. Brandl. (2010) Mutational analysis of the C-terminal FATC domain of Saccharomyces cerevisiae Tra1. Current Genetics 56:5, pages 447-465.
Crossref
Gianpiero Spedale, Nikolai Mischerikow, Albert J.R. Heck, H.T. Marc Timmers & W.W.M. Pim Pijnappel. (2010) Identification of Pep4p as the Protease Responsible for Formation of the SAGA-related SLIK Protein Complex. Journal of Biological Chemistry 285:30, pages 22793-22799.
Crossref
Rebekah L. Rogers, Trevor Bedford, Ana M. Lyons & Daniel L. Hartl. (2010) Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster . Proceedings of the National Academy of Sciences 107:24, pages 10943-10948.
Crossref
Kenneth K Lee, Selene K Swanson, Laurence Florens, Michael P Washburn & Jerry L Workman. (2009) Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes. Epigenetics & Chromatin 2:1.
Crossref
Nikolai Mischerikow, Gianpiero Spedale, A. F. Maarten Altelaar, H. Th. Marc Timmers, W. W. M. Pim Pijnappel & Albert J. R. Heck. (2009) In-Depth Profiling of Post-Translational Modifications on the Related Transcription Factor Complexes TFIID and SAGA. Journal of Proteome Research 8:11, pages 5020-5030.
Crossref
Christie S Chang & Lorraine Pillus. (2009) Collaboration Between the Essential Esa1 Acetyltransferase and the Rpd3 Deacetylase Is Mediated by H4K12 Histone Acetylation in Saccharomyces cerevisiae . Genetics 183:1, pages 149-160.
Crossref
James R Krycer, Chi Nam Ignatius Pang & Marc R Wilkins. (2008) High throughput protein-protein interaction data: clues for the architecture of protein complexes. Proteome Science 6:1.
Crossref
Dominique Helmlinger, Samuel Marguerat, Judit Villén, Steven P. Gygi, Jürg Bähler & Fred Winston. (2008) The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8 . Genes & Development 22:22, pages 3184-3195.
Crossref
Neeman Mohibullah & Steven Hahn. (2008) Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Genes & Development 22:21, pages 2994-3006.
Crossref
Lisa Laprade, David Rose & Fred Winston. (2007) Characterization of New Spt3 and TATA-Binding Protein Mutants of Saccharomyces cerevisiae : Spt3–TBP Allele-Specific Interactions and Bypass of Spt8 . Genetics 177:4, pages 2007-2017.
Crossref
Stephen MT Hoke, Gaoyang Liang, A Irina Mutiu, Julie Genereaux & Christopher J Brandl. (2007) C-terminal processing of yeast Spt7 occurs in the absence of functional SAGA complex. BMC Biochemistry 8:1.
Crossref
Nicole James, Emilie Landrieux & Martine A Collart. (2007) A SAGA-Independent Function of SPT3 Mediates Transcriptional Deregulation in a Mutant of the Ccr4-Not Complex in Saccharomyces cerevisiae . Genetics 177:1, pages 123-135.
Crossref
Lihua Jiang, Jonell N. Smith, Shannon L. Anderson, Ping Ma, Craig A. Mizzen & Neil L. Kelleher. (2007) Global Assessment of Combinatorial Post-translational Modification of Core Histones in Yeast Using Contemporary Mass Spectrometry. Journal of Biological Chemistry 282:38, pages 27923-27934.
Crossref
S P Baker & P A Grant. (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26:37, pages 5329-5340.
Crossref
Anastasia Wyce, Tiaojiang Xiao, Kelly A. Whelan, Christine Kosman, Wendy Walter, Dirk Eick, Timothy R. Hughes, Nevan J. Krogan, Brian D. Strahl & Shelley L. Berger. (2007) H2B Ubiquitylation Acts as a Barrier to Ctk1 Nucleosomal Recruitment Prior to Removal by Ubp8 within a SAGA-Related Complex. Molecular Cell 27:2, pages 275-288.
Crossref
Jeremy A. Daniel & Patrick A. Grant. (2007) Multi-tasking on chromatin with the SAGA coactivator complexes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 618:1-2, pages 135-148.
Crossref
Roopa Luthra, Shana C. Kerr, Michelle T. Harreman, Luciano H. Apponi, Milo B. Fasken, Suneela Ramineni, Shyam Chaurasia, Sandro R. Valentini & Anita H. Corbett. (2007) Actively Transcribed GAL Genes Can Be Physically Linked to the Nuclear Pore by the SAGA Chromatin Modifying Complex. Journal of Biological Chemistry 282:5, pages 3042-3049.
Crossref
Myriam Ruault & Lorraine Pillus. (2006) Chromatin-Modifiying Enzymes Are Essential When the Saccharomyces cerevisiae Morphogenesis Checkpoint Is Constitutively Activated . Genetics 174:3, pages 1135-1149.
Crossref
Mark Chandy, José L. Gutiérrez, Philippe Prochasson & Jerry L. Workman. (2006) SWI/SNF Displaces SAGA-Acetylated Nucleosomes. Eukaryotic Cell 5:10, pages 1738-1747.
Crossref
Alwin KöhlerPau Pascual-García, Ana Llopis, Meritxell Zapater, Francesc Posas, Ed HurtSusana Rodríguez-Navarro. (2006) The mRNA Export Factor Sus1 Is Involved in Spt/Ada/Gcn5 Acetyltransferase-mediated H2B Deubiquitinylation through Its Interaction with Ubp8 and Sgf11. Molecular Biology of the Cell 17:10, pages 4228-4236.
Crossref
Decha Sermwittayawong & Song Tan. (2006) SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitment. The EMBO Journal 25:16, pages 3791-3800.
Crossref
Ahmed H. Hassan, Salma Awad & Philippe Prochasson. (2006) The Swi2/Snf2 Bromodomain Is Required for the Displacement of SAGA and the Octamer Transfer of SAGA-acetylated Nucleosomes. Journal of Biological Chemistry 281:26, pages 18126-18134.
Crossref
Michael J. Carrozza, Bing Li, Laurence Florens, Tamaki Suganuma, Selene K. Swanson, Kenneth K. Lee, Wei-Jong Shia, Scott Anderson, John Yates, Michael P. Washburn & Jerry L. Workman. (2005) Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription. Cell 123:4, pages 581-592.
Crossref
Daeyoup Lee, Elena Ezhkova, Bing Li, Samantha G. Pattenden, William P. Tansey & Jerry L. Workman. (2005) The Proteasome Regulatory Particle Alters the SAGA Coactivator to Enhance Its Interactions with Transcriptional Activators. Cell 123:3, pages 423-436.
Crossref
John C Game, Marsha S Williamson & Clelia Baccari. (2005) X-Ray Survival Characteristics and Genetic Analysis for Nine Saccharomyces Deletion Mutants That Show Altered Radiation Sensitivity. Genetics 169:1, pages 51-63.
Crossref
H.Th. Marc Timmers & Làszlò Tora. (2005) SAGA unveiled. Trends in Biochemical Sciences 30:1, pages 7-10.
Crossref
Maxime Wery, Elena Shematorova, Benoît Van Driessche, Jean Vandenhaute, Pierre Thuriaux & Vincent Van Mullem. (2004) Members of the SAGA and Mediator complexes are partners of the transcription elongation factor TFIIS. The EMBO Journal 23:21, pages 4232-4242.
Crossref
Pei-Yun Jenny Wu, Christine Ruhlmann, Fred Winston & Patrick Schultz. (2004) Molecular Architecture of the S. cerevisiae SAGA Complex. Molecular Cell 15:2, pages 199-208.
Crossref
Linda Warfield, Jeffrey A. Ranish & Steven Hahn. (2004) Positive and negative functions of the SAGA complex mediated through interaction of Spt8 with TBP and the N-terminal domain of TFIIA. Genes & Development 18:9, pages 1022-1034.
Crossref
Mustapha Aouida, Nicolas Pagé, Anick Leduc, Matthias Peter & Dindial Ramotar. (2004) A Genome-Wide Screen in Saccharomyces cerevisiae Reveals Altered Transport As a Mechanism of Resistance to the Anticancer Drug Bleomycin . Cancer Research 64:3, pages 1102-1109.
Crossref
Jeremy A. Daniel, Michael S. Torok, Zu-Wen Sun, David Schieltz, C.David Allis, John R. YatesIIIIII & Patrick A. Grant. (2004) Deubiquitination of Histone H2B by a Yeast Acetyltransferase Complex Regulates Transcription. Journal of Biological Chemistry 279:3, pages 1867-1871.
Crossref
Susana Rodrı́guez-Navarro, Tamás Fischer, Ming-Juan Luo, Oreto Antúnez, Susanne Brettschneider, Johannes Lechner, Jose E. Pérez-Ortı́n, Robin Reed & Ed Hurt. (2004) Sus1, a Functional Component of the SAGA Histone Acetylase Complex and the Nuclear Pore-Associated mRNA Export Machinery. Cell 116:1, pages 75-86.
Crossref
Karl W. Henry, Anastasia Wyce, Wan-Sheng Lo, Laura J. Duggan, N.C. Tolga Emre, Cheng-Fu Kao, Lorraine Pillus, Ali Shilatifard, Mary Ann Osley & Shelley L. Berger. (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes & Development 17:21, pages 2648-2663.
Crossref
Xiaohui Liu, Jerusalem Tesfai, Yvonne A. Evrard, Sharon Y.R. Dent & Ernest Martinez. (2003) c-Myc Transformation Domain Recruits the Human STAGA Complex and Requires TRRAP and GCN5 Acetylase Activity for Transcription Activation. Journal of Biological Chemistry 278:22, pages 20405-20412.
Crossref
Gene O. Bryant & Mark Ptashne. (2003) Independent Recruitment In Vivo by Gal4 of Two Complexes Required for Transcription. Molecular Cell 11:5, pages 1301-1309.
Crossref
. (2002) Current Awareness on Yeast. Yeast 19:15, pages 1373-1380.
Crossref
David E. Sterner, Rimma Belotserkovskaya & Shelley L. Berger. (2002) SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription. Proceedings of the National Academy of Sciences 99:18, pages 11622-11627.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.