287
Views
72
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier

&
Pages 437-455 | Published online: 02 Apr 2012

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

Mohd Cairul Iqbal Mohd Amin, Naveed Ahmad, Manisha Pandey, Muhammad Mustafa Abeer & Najwa Mohamad. (2015) Recent advances in the role of supramolecular hydrogels in drug delivery. Expert Opinion on Drug Delivery 12:7, pages 1149-1161.
Read now
Scott Loethen, Jong‐Mok Kim & David H. Thompson. (2007) Biomedical Applications of Cyclodextrin Based Polyrotaxanes. Polymer Reviews 47:3, pages 383-418.
Read now
Tooru Ooya, Atsushi Yamashita, Motoichi Kurisawa, Yuko Sugaya, Atsushi Maruyama & Nobuhiko Yui. (2004) Effects of polyrotaxane structure on polyion complexation with DNA. Science and Technology of Advanced Materials 5:3, pages 363-369.
Read now
Tooru Ooya, Noritomo Kobayashi, Takahiro Ichi, Shintaro Sasaki & Nobuhiko Yui. (2003) Hydrogels having tubular α-cyclodextrin structure: effect of nano-tube structure on long alkyl chain partitions. Science and Technology of Advanced Materials 4:1, pages 39-42.
Read now
Junji Watanabe, Tooru Ooya & Nobuhiko Yui. (1999) Effect of acetylation of biodegradable polyrotaxanes on its supramolecular dissociation via terminal ester hydrolysis. Journal of Biomaterials Science, Polymer Edition 10:12, pages 1275-1288.
Read now

Articles from other publishers (66)

Karan Dikshit & Carson J. Bruns. 2023. Supramolecular Nanotechnology. Supramolecular Nanotechnology 565 594 .
Kentato Morita, Keiichi Motoyama, Ayako Kuramoto, Risako Onodera & Taishi Higashi. (2021) Synthesis of cyclodextrin‐based radial polycatenane cyclized by amide bond and subsequent fabrication of water‐soluble derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry 100:3-4, pages 169-175.
Crossref
Karan Dikshit & Carson J. Bruns. (2021) Post-synthesis modification of slide-ring gels for thermal and mechanical reconfiguration. Soft Matter 17:20, pages 5248-5257.
Crossref
Ruriko Sekiya-Aoyama, Yoshinori Arisaka, Masahiro Hakariya, Hiroki Masuda, Takanori Iwata, Tetsuya Yoda & Nobuhiko Yui. (2021) Dual effect of molecular mobility and functional groups of polyrotaxane surfaces on the fate of mesenchymal stem cells. Biomaterials Science 9:3, pages 675-684.
Crossref
Zhi Liu, Gregory A. Simchick, Jing Qiao, Morgan M. Ashcraft, Shuolin Cui, Tamas Nagy, Qun Zhao & May P. Xiong. (2020) Reactive Oxygen Species-Triggered Dissociation of a Polyrotaxane-Based Nanochelator for Enhanced Clearance of Systemic and Hepatic Iron. ACS Nano 15:1, pages 419-433.
Crossref
Ruriko Sekiya‐Aoyama, Yoshinori Arisaka & Nobuhiko Yui. (2020) Mobility Tuning of Polyrotaxane Surfaces to Stimulate Myocyte Differentiation. Macromolecular Bioscience 20:4.
Crossref
Yoshinori Arisaka & Nobuhiko Yui. (2019) Polyrotaxane-based biointerfaces with dynamic biomaterial functions. Journal of Materials Chemistry B 7:13, pages 2123-2129.
Crossref
Sharif M. Shaheen, A.K. Azad, M. Mustafezur Rahman & Md. Jashim Uddin. (2018) A comparative transgene expression study between a protaplex and a rotaplex embedded lipid-nano particles in murine derived dendritic cell. Journal of Interdisciplinary Nanomedicine 3:2, pages 55-66.
Crossref
Khadijeh Soleimani, Abbas Dadkhah Tehrani & Mohsen Adeli. (2018) Preparation of new GO-based slide ring hydrogel through a convenient one-pot approach as methylene blue absorbent. Carbohydrate Polymers 187, pages 94-101.
Crossref
Taishi Higashi, Daisuke Iohara, Keiichi Motoyama & Hidetoshi Arima. (2018) Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules. Chemical and Pharmaceutical Bulletin 66:3, pages 207-216.
Crossref
Rodinel Ardeleanu, Andrei I. Dascalu, Andrei NeamtuDragos Peptanariu, Cristina M. Uritu, Stelian S. Maier, Alina Nicolescu, Bogdan C. Simionescu, Mihail Barboiu & Mariana Pinteala. (2018) Multivalent polyrotaxane vectors as adaptive cargo complexes for gene therapy. Polymer Chemistry 9:7, pages 845-859.
Crossref
Jun Araki, Yuta Honda & Yasuhiro Kohsaka. (2017) Acid- or photo-cleavable polyrotaxane: Subdivision of supramolecular main-chain type polyrotaxane structure induced by acidolysis or photolysis. Polymer 125, pages 134-137.
Crossref
Atsushi TAMURA, Yoshinori ARISAKA & Nobuhiko YUI. (2017) Emergence of Intelligent Functions with Supramolecular Polymers and their Biomaterials Applications. KOBUNSHI RONBUNSHU 74:4, pages 239-249.
Crossref
Zhi Zhong, Yang Gao, Baohua Guo & Jun Xu. 2001. Kirk-Othmer Encyclopedia of Chemical Technology. Kirk-Othmer Encyclopedia of Chemical Technology 1 35 .
Carson J. Bruns & J. Fraser Stoddart. 2016. The Nature of the Mechanical Bond. The Nature of the Mechanical Bond 555 733 .
Zhi Liu, Tien-Min Lin, Max Purro & May P. Xiong. (2016) Enzymatically Biodegradable Polyrotaxane–Deferoxamine Conjugates for Iron Chelation. ACS Applied Materials & Interfaces 8:39, pages 25788-25797.
Crossref
Karel Ulbrich, Kateřina Holá, Vladimir Šubr, Aristides Bakandritsos, Jiří Tuček & Radek Zbořil. (2016) Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chemical Reviews 116:9, pages 5338-5431.
Crossref
Koichi Mayumi, Kohzo Ito & Kazuaki Kato. 2015. Polyrotaxane and Slide-Ring Materials. Polyrotaxane and Slide-Ring Materials 170 197 .
Shimpei Yamada, Yusuke Sanada, Atsushi Tamura, Nobuhiko Yui & Kazuo Sakurai. (2015) Chain architecture and flexibility of α-cyclodextrin/PEG polyrotaxanes in dilute solutions. Polymer Journal 47:6, pages 464-467.
Crossref
Jianxiang Zhang & Peter X. Ma. (2013) Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Advanced Drug Delivery Reviews 65:9, pages 1215-1233.
Crossref
Christopher J. Collins, Leslie A. McCauliff, Seok-Hee Hyun, Zhaorui Zhang, Lake N. Paul, Aditya Kulkarni, Klaus Zick, Mary Wirth, Judith Storch & David H. Thompson. (2013) Synthesis, Characterization, and Evaluation of Pluronic-Based β-Cyclodextrin Polyrotaxanes for Mobilization of Accumulated Cholesterol from Niemann-Pick Type C Fibroblasts. Biochemistry 52:19, pages 3242-3253.
Crossref
Eliška Bílková, Miloš Sedlák, Aleš Imramovský, Petra Chárová, Petr Knotek & Ludvík Beneš. (2011) Prednisolone-α-cyclodextrin-star poly(ethylene glycol) polypseudorotaxane with delayed pH-sensitivity as a targeted drug delivery system. International Journal of Pharmaceutics 414:1-2, pages 42-47.
Crossref
Jia Jing Li, Feng Zhao & Jun Li. (2011) Polyrotaxanes for applications in life science and biotechnology. Applied Microbiology and Biotechnology 90:2, pages 427-443.
Crossref
Hoon Hyun & Nobuhiko Yui. (2011) Mono-, Di-, or Triazidated Cyclodextrin-Based Polyrotaxanes for Facile and Efficient Functionalization via Click Chemistry. Macromolecular Rapid Communications 32:3, pages 326-331.
Crossref
Wei Li, Yanli Guo, Peng He, Rong Yang, Xingguo Li, Ye Chen, Dehai Liang, Masatoshi Kidowaki & Kohzo Ito. (2011) Preparation and study of alkyl carbamylated polyrotaxanes with large hysteresis during sol–gel phase transition. Polymer Chemistry 2:8, pages 1797.
Crossref
Kazuaki Kato, Hiroshi Komatsu & Kohzo Ito. (2010) A Versatile Synthesis of Diverse Polyrotaxanes with a Dual Role of Cyclodextrin as both the Cyclic and Capping Components. Macromolecules 43:21, pages 8799-8804.
Crossref
Ngoc Quyen Tran, Yoon Ki Joung, Eugene Lih, Kyung Min Park & Ki Dong Park. (2010) Supramolecular Hydrogels Exhibiting Fast In Situ Gel Forming and Adjustable Degradation Properties. Biomacromolecules 11:3, pages 617-625.
Crossref
Eliška Bílková, Miloš Sedlák, Bohuslav Dvořák, Karel Ventura, Petr Knotek & Ludvík Beneš. (2010) Prednisolone-α-cyclodextrin-star PEG polypseudorotaxanes with controlled drug delivery properties. Organic & Biomolecular Chemistry 8:23, pages 5423.
Crossref
Jia Jing Li, Feng Zhao & Jun Li. 2011. Biofunctionalization of Polymers and their Applications. Biofunctionalization of Polymers and their Applications 207 249 .
Kazuaki Kato, Katsunari Inoue, Masatoshi Kidowaki & Kohzo Ito. (2009) Organic−Inorganic Hybrid Slide-Ring Gels: Polyrotaxanes Consisting of Poly(dimethylsiloxane) and γ-Cyclodextrin and Subsequent Topological Cross-Linking. Macromolecules 42:18, pages 7129-7136.
Crossref
Yuichi Ohya, Seigo Takamido, Koji Nagahama, Tatsuro Ouchi, Ryo Katoono & Nobuhiko Yui. (2009) Polyrotaxane Composed of Poly- l -lactide and α-Cyclodextrin Exhibiting Protease-Triggered Hydrolysis . Biomacromolecules 10:8, pages 2261-2267.
Crossref
Jun Li & Xian Jun Loh. (2008) Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery. Advanced Drug Delivery Reviews 60:9, pages 1000-1017.
Crossref
Ryouji Kawabata, Ryo Katoono, Masayuki Yamaguchi & Nobuhiko Yui. (2007) Bundling Two Polymeric Chains with γ-Cyclodextrin Cavity Contributing to Supramolecular Network Formation. Macromolecules 40:4, pages 1011-1017.
Crossref
Nobuhiko Yui & Tooru Ooya. (2006) Molecular Mobility of Interlocked Structures Exploiting New Functions of Advanced Biomaterials. Chemistry – A European Journal 12:26, pages 6730-6737.
Crossref
Hak Soo Choi, Akihiro Takahashi, Tooru Ooya & Nobuhiko Yui. (2006) Molecular-Recognition and Binding Properties of Cyclodextrin-Conjugated Polyrotaxanes. ChemPhysChem 7:8, pages 1668-1670.
Crossref
Hak Soo Choi, Tooru Ooya & Nobuhiko Yui. (2006) One‐Pot Synthesis of a Polyrotaxane via Selective Threading of a PEI‐ b ‐PEG‐ b ‐PEI Copolymer . Macromolecular Bioscience 6:6, pages 420-424.
Crossref
Tooru Ooya. 2006. Cyclodextrin Materials Photochemistry, Photophysics and Photobiology. Cyclodextrin Materials Photochemistry, Photophysics and Photobiology 303 316 .
Hak Soo Choi, Sang Cheon Lee, Kaori Yamamoto & Nobuhiko Yui. (2005) Block-Selective Movement of α-Cyclodextrins in Polyrotaxanes of PEI- b -PEG- b -PEI Copolymer . Macromolecules 38:23, pages 9878-9881.
Crossref
Ph. A. Kalashnikov, V. I. Sokolov & I. N. Topchieva. (2005) Synthesis of polyrotaxanes based on α-cyclodextrin and poly(ethylene oxide). Russian Chemical Bulletin 54:8, pages 1973-1977.
Crossref
Irina N. Topchieva, Alan E. Tonelli, Irina G. Panova, Elena V. Matuchina, Filipp A. Kalashnikov, Vasily I. Gerasimov, Cristian C. Rusa, Mariana Rusa & Marcus A. Hunt. (2004) Two-Phase Channel Structures Based on α-Cyclodextrin−Polyethylene Glycol Inclusion Complexes. Langmuir 20:21, pages 9036-9043.
Crossref
Anthony M. Lowman, Thomas D. Dziubla, Petr Bures & Nicholas A. Peppas. 2004. Advances in Chemical Engineering: Molecular and Cellular Foundations of Biomaterials. Advances in Chemical Engineering: Molecular and Cellular Foundations of Biomaterials 75 130 .
Toshikazu Takata, Nobuhiro Kihara & Yoshio Furusho. 2004. Polymer Synthesis. Polymer Synthesis 1 75 .
Robert Langer & Nicholas A. Peppas. (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AIChE Journal 49:12, pages 2990-3006.
Crossref
Tooru Ooya, Masaru Eguchi, Atsushi Ozaki & Nobuhiko Yui. (2002) Carboxyethylester-polyrotaxanes as a new calcium chelating polymer: synthesis, calcium binding and mechanism of trypsin inhibition. International Journal of Pharmaceutics 242:1-2, pages 47-54.
Crossref
Tooru Ooya & Nobuhiko Yui. (2002) Multivalent interactions between biotin–polyrotaxane conjugates and streptavidin as a model of new targeting for transporters. Journal of Controlled Release 80:1-3, pages 219-228.
Crossref
Hyung Dal Park, Won Kyu Lee, Tooru Ooya, Ki Dong Park, Young Ha Kim & Nobuhiko Yui. (2002) Anticoagulant activity of sulfonated polyrotaxanes as blood‐compatible materials. Journal of Biomedical Materials Research 60:1, pages 186-190.
Crossref
Nobuhiko Yui & Tooru Ooya. 2002. Supramolecular Design for Biological Applications. Supramolecular Design for Biological Applications.
Nobuhiko Yui & Taichi Ikeda. 2002. Supramolecular Design for Biological Applications. Supramolecular Design for Biological Applications.
Harry W. Gibson & Eric J. Mahan. 2002. Cyclic Polymers. Cyclic Polymers 415 560 .
Ooya Tooru & Yui Nobuhiko. 2002. Biomedical Polymers and Polymer Therapeutics. Biomedical Polymers and Polymer Therapeutics 75 90 .
Tooru Ooya, Tomokatsu Kawashima & Nobuhiko Yui. (2001) Synthesis of polyrotaxane-biotin conjugates and surface plasmon resonance analysis of streptavidin recognition. Biotechnology and Bioprocess Engineering 6:4, pages 293-300.
Crossref
Kang Moo Huh, Tooru Ooya, Shintaro Sasaki & Nobuhiko Yui. (2001) Polymer Inclusion Complex Consisting of Poly(ε-lysine) and α-Cyclodextrin. Macromolecules 34:8, pages 2402-2404.
Crossref
Tooru Ooya, Masaru Eguchi & Nobuhiko Yui. (2001) Enhanced Accessibility of Peptide Substrate toward Membrane-Bound Metalloexopeptidase by Supramolecular Structure of Polyrotaxane. Biomacromolecules 2:1, pages 200-203.
Crossref
Takahiro Ichi, Junji Watanabe, Tooru Ooya & Nobuhiko Yui. (2001) Controllable Erosion Time and Profile in Poly(ethylene glycol) Hydrogels by Supramolecular Structure of Hydrolyzable Polyrotaxane. Biomacromolecules 2:1, pages 204-210.
Crossref
Tooru Ooya, Koichi Arizono & Nobuhiko Yui. (2000) Synthesis and characterization of an oligopeptide - terminated polyrotaxane as a drug carrier. Polymers for Advanced Technologies 11:8-12, pages 642-651.
Crossref
Miyuko Okada, Mikiharu Kamachi & Akira Harada. (1999) Preparation and Characterization of Inclusion Complexes between Methylated Cyclodextrins and Poly(tetrahydrofuran). Macromolecules 32:21, pages 7202-7207.
Crossref
Isao Yamaguchi, Hidetake Ishii, Kohtaro Osakada, Takakazu Yamamoto & Shin-ichi Fukuzawa. (1999) Cyclodextrin Complexes of Bisepoxide and of α,ω -Diamine in Several Molar Ratios. Preparation and Characterization in the Solid State . Bulletin of the Chemical Society of Japan 72:7, pages 1541-1545.
Crossref
Caiguo Gong & Hany W. Gibson. 1999. Molecular Catenanes, Rotaxanes and Knots. Molecular Catenanes, Rotaxanes and Knots 277 321 .
Hiroaki Fujita, Tooru Ooya & Nobuhiko Yui. (1999) Thermally Induced Localization of Cyclodextrins in a Polyrotaxane Consisting of β-Cyclodextrins and Poly(ethylene glycol)−Poly(propylene glycol) Triblock Copolymer. Macromolecules 32:8, pages 2534-2541.
Crossref
Tooru Ooya & Nobuhiko Yui. (1999) Synthesis of theophylline–polyrotaxane conjugates and their drug release via supramolecular dissociation. Journal of Controlled Release 58:3, pages 251-269.
Crossref
Philip E. Mason, William S. Bryant & Harry W. Gibson. (1999) Threading/Dethreading Exchange Rates as Structural Probes in Polypseudorotaxanes. Macromolecules 32:5, pages 1559-1569.
Crossref
Toshikazu Takata, Hiroaki Kawasaki, Satoko Asai, Nobuhiro Kihara & Yoshio Furusho. (1999) Radically Polymerizable Pseudorotaxane Monomers: Versatile Building Units for Side Chain Polyrotaxane Synthesis. Chemistry Letters 28:2, pages 111-112.
Crossref
Makio Tamura, De Gao & Akihiko Ueno. 1999. Proceedings of the Ninth International Symposium on Cyclodextrins. Proceedings of the Ninth International Symposium on Cyclodextrins 521 524 .
Junji Watanabe, Tooru Ooya & Nobuhiko Yui. (1998) Preparation and Characterization of a Polyrotaxane with Non-enzymatically Hydrolyzable Stoppers. Chemistry Letters 27:10, pages 1031-1032.
Crossref
Nobuhiko Yui, Tooru Ooya & Takashi Kumeno. (1998) Effect of Biodegradable Polyrotaxanes on Platelet Activation. Bioconjugate Chemistry 9:1, pages 118-125.
Crossref
Nikolaos A Peppas. (1997) Hydrogels and drug delivery. Current Opinion in Colloid & Interface Science 2:5, pages 531-537.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.