452
Views
122
CrossRef citations to date
0
Altmetric
Regular Papers

Numerical simulation of metal powder die compaction with special consideration of cracking

&
Pages 123-131 | Published online: 19 Jul 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (8)

I. Cristofolini, G. Pederzini, A. Rambelli & A. Molinari. (2016) Densification and deformation during uniaxial cold compaction of stainless steel powder with different particle size. Powder Metallurgy 59:1, pages 73-84.
Read now
. (2012) Mining the PM archive. Powder Metallurgy 55:1, pages 1-2.
Read now
J A Hernández, J Oliver, J C Cante & R Weyler. (2012) Finite element modelling of ejection cracks in powder metallurgy die compaction processes: case study. Powder Metallurgy 55:1, pages 36-44.
Read now
S A Rolland, D T Gethin, R W Lewis & J H Tweed. (2011) Constitutive model for powders with characterisation of low pressure region of yield surface. Powder Metallurgy 54:5, pages 608-613.
Read now
J.-D. Prigge & K. Sommer. (2011) Numerical Investigation of Stress Distribution during Die Compaction of Food Powders. Particulate Science and Technology 29:1, pages 40-52.
Read now
E. Acar, Y. Hammi, P. G. Allison, T. W. Stone & M. F. Horstemeyer. (2010) Sensitivity and uncertainty analysis of microstructure–property relationships for compacted powder metals. Powder Metallurgy 53:2, pages 141-145.
Read now
T. Kraft & H. Riedel. (2002) Numerical simulation of die compaction and sintering. Powder Metallurgy 45:3, pages 227-231.
Read now

Articles from other publishers (114)

Kang Guan, Zongbei He, Qingfeng Zeng, Jiantao Liu, Chuxin Zhang & Cheng Peng. (2024) A numerical-experimental approach to simulate the sintering behavior of “cer-cer” fuels by NITE process. Journal of Nuclear Materials 588, pages 154760.
Crossref
Sameen Mustafa, Angelika Peer & Franco Concli. 2024. Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems. Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems 836 847 .
Г.Л. Петросян & А.А. Бабаян. (2023) Особенности построения шляпкообразной модели друкера-прагера для неспечeнных порошковых материалов. Mechanics - Proceedings of National Academy of Sciences of Armenia, pages 59-66.
Crossref
Hjalmar Staf, Matilda Björklund, Daniel Fredriksson & Per-Lennart Larsson. (2023) On the Influence from Pressing Agent (PEG) on the Elastic and Plastic Mechanical Behavior of Hard Metal Powder Compacts. Crystals 13:6, pages 926.
Crossref
Göran Frenning. (2023) On the thermodynamic consistency of the Drucker–Prager Cap model: Modification of the plastic potential and analysis of unloading. Powder Technology 423, pages 118503.
Crossref
Kien Nguyen, Amin Mehrabian, Arpita P. Bathija & Ashok Santra. (2022) Compression of Particulate Materials in Wellbore Fractures and Enhancement in the Wellbore Breakdown Limit. Journal of Applied Mechanics 89:10.
Crossref
Chen Zhang, Lei Jia, Hui Xie, Ruifeng Niu, Zhenlin Lu & Katsuyoshi Kondoh. (2022) Simulation on the Direct Powder Rolling Process of Cu Powder by Drucker–Prager/Cap Model and Its Experimental Verification. Metals 12:7, pages 1145.
Crossref
М. Г. Арзуманян. (2022) Обоснование модифицированной модели текучести Друкера – Прагера для порошковых материалов. Reports of NAS RA, pages 133-140.
Crossref
Alexander Russell, John Strong, Sean Garner, William Ketterhagen, Michelle Long & Maxx Capece. (2022) Direct Compaction Drug Product Process Modeling. AAPS PharmSciTech 23:1.
Crossref
G. Alonso Aruffo, M. Michrafy, D. Oulahna & A. Michrafy. (2022) Modelling powder compaction with consideration of a deep grooved punch. Powder Technology 395, pages 681-694.
Crossref
Md Rokon Ud Dowla Biswas, Sung-Soo Ryu & Dang-Hyok Yoon. (2021) Microstructural observation of complex-shaped green ceramic compact and numerical simulation with special consideration on crack formation. Ceramics International 47:22, pages 32179-32186.
Crossref
Artyom Plyushch, Nerijus Mačiulis, Aliaksei Sokal, Robertas Grigalaitis, Jan Macutkevič, Alexander Kudlash, Natalia Apanasevich, Konstantin Lapko, Algirdas Selskis, Sergey A. Maksimenko, Polina Kuzhir & Juras Banys. (2021) 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties. Materials 14:17, pages 5065.
Crossref
Ingo Schmidt, Andreas Trondl & Torsten Kraft. (2021) Yielding and failure of an assembly of frictional elasto-plastic particles: A computational RVE study. Journal of the Mechanics and Physics of Solids 154, pages 104496.
Crossref
Md Rokon Ud Dowla Biswas, Sangil Hyun, Sung-Soo Ryu & Dang-Hyok Yoon. (2021) Characterization of complex die-pressed Al2O3 green compact using liquid immersion, X-ray tomography, and numerical simulations. Journal of the European Ceramic Society 41:8, pages 4558-4566.
Crossref
M.B. Shtern, O.V. Mikhailov & A.O. Mikhailov. (2021) Generalized Continuum Model of Plasticity of Powder and Porous Materials. Powder Metallurgy and Metal Ceramics 60:1-2, pages 20-34.
Crossref
Rui Zhou, Li Yang, Zhong-wang Liu & Bing-fei Liu. (2020) Modeling the powder compaction process by an integrated simulation and inverse optimization method. Materials Today Communications 25, pages 101475.
Crossref
Caiuã Caldeira de Melo, Matheus Furlan, François Hild, Nicolas Schmitt & Rodrigo Bresciani Canto. (2020) Uniaxial compression test on ceramic green compact with bending consideration using digital image correlation. Powder Technology 376, pages 136-148.
Crossref
Pipit Fitriani, Heejin Kwon, Yoon Soo Han, Sung-Min Lee & Dang-Hyok Yoon. (2020) Granule rearrangement and pore structure of a spray-dried alumina compact observed by X-ray tomography. Journal of the European Ceramic Society 40:6, pages 2445-2452.
Crossref
T. Bleistein, S. Diebels & A. Jung. (2020) Parameter identification for open cell aluminium foams using inverse calculation. Computers & Mathematics with Applications 79:9, pages 2644-2654.
Crossref
S. M. Wang, Y. Wang, Y. X. Wang, F. P. Liu & J. Cao. (2020) Stresses State and Mechanical Behaviors of the Green Body During Die Compaction and Ejection Process. Acta Metallurgica Sinica (English Letters) 33:4, pages 605-614.
Crossref
Anas Bouguecha & Bernd-Arno Behrens. 2020. Mechatronics 4.0. Mechatronics 4.0 77 86 .
Rahmi Ünal. 2019. Modern Manufacturing Processes. Modern Manufacturing Processes 65 87 .
David Wilson, Ron Roberts & John Blyth. 2019. Chemical Engineering in the Pharmaceutical Industry. Chemical Engineering in the Pharmaceutical Industry 203 225 .
Jong Won Baek & Seong Jin Park. (2019) Pressure Transmission in the Compaction Process of Nickel Powder Using the Finite Element Methods. Korean Journal of Metals and Materials 57:2, pages 115-123.
Crossref
Mengcheng Zhou, Shangyu Huang, Yu Lei, Wei Liu & Shiwei Yan. (2018) Investigation on Compaction Densification Behaviors of Multicomponent Mixed Metal Powders to Manufacture Silver-Based Filler Metal Sheets. Arabian Journal for Science and Engineering 44:2, pages 1321-1335.
Crossref
A. Atrian, G. H. Majzoobi, B. Markert & S. H. Nourbakhsh. (2018) A novel approach to calibrate the Drucker–Prager Cap model for Al7075 powder. Archive of Applied Mechanics 88:10, pages 1859-1876.
Crossref
C.C. Melo, A.L.I. Moraes, F.O. Rocco, F.S. Montilha & R.B. Canto. (2018) A validation procedure for numerical models of ceramic powder pressing. Journal of the European Ceramic Society 38:8, pages 2928-2936.
Crossref
Qian Jia, Xizhong An, Haiyang Zhao, Haitao Fu, Hao Zhang & Xiaohong Yang. (2018) Compaction and solid-state sintering of tungsten powders: MPFEM simulation and experimental verification. Journal of Alloys and Compounds 750, pages 341-349.
Crossref
Youssef Hammi, Tonya Stone, Haley Doude, L. Arias Tucker, P. G. Allison & Mark F. Horstemeyer. 2018. Integrated Computational Materials Engineering (ICME) for Metals. Integrated Computational Materials Engineering (ICME) for Metals 137 198 .
A. Krairi, K. Matouš & A. Salvadori. (2018) A poro-viscoplastic constitutive model for cold compacted powders at finite strains. International Journal of Solids and Structures 135, pages 289-300.
Crossref
A. Baroutaji, S. Lenihan & K. Bryan. (2017) Combination of finite element method and Drucker-Prager Cap material model for simulation of pharmaceutical tableting process. Materialwissenschaft und Werkstofftechnik 48:11, pages 1133-1145.
Crossref
Kozo Takayama, Saori Otoguro, Nobuto Okada, Masato HoshinoNaoto YagiYasuko Obata. (2017) Determination of Density Distribution of Tablets Using Synchrotron X-ray Computed Tomography放射光X線CTによる錠剤内密度分布の測定. YAKUGAKU ZASSHI 137:6, pages 757-762.
Crossref
Mengcheng Zhou, Shangyu Huang, Jianhua Hu, Yu Lei, Fangli Zou, Shiwei Yan & Mei Yang. (2017) Experiment and finite element analysis of compaction densification mechanism of Ag-Cu-Sn-In mixed metal powder. Powder Technology 313, pages 68-81.
Crossref
Youssef Hammi, Tonya W. Stone, Bhasker Paliwal, Mark F. Horstemeyer & Paul G. Allison. (2017) Smooth Yield Surface Constitutive Modeling for Granular Materials. Journal of Engineering Materials and Technology 139:1.
Crossref
Mengcheng Zhou, Shangyu Huang, Jianhua Hu, Yu Lei, Yong Xiao, Bei Li, Shiwei Yan & Fangli Zou. (2017) A density-dependent modified Drucker-Prager Cap model for die compaction of Ag57.6-Cu22.4-Sn10-In10 mixed metal powders. Powder Technology 305, pages 183-196.
Crossref
Ahmad Baroutaji, Mustafa Sajjia & Abdul-Ghani Olabi. 2017. Reference Module in Materials Science and Materials Engineering. Reference Module in Materials Science and Materials Engineering.
J. Cunningham, K. LaMarche & A. Zavaliangos. 2017. Predictive Modeling of Pharmaceutical Unit Operations. Predictive Modeling of Pharmaceutical Unit Operations 205 227 .
Alexander Krok & Chuan-Yu Wu. 2017. Engineering Crystallography: From Molecule to Crystal to Functional Form. Engineering Crystallography: From Molecule to Crystal to Functional Form 451 462 .
Adham Hashibon, Raphael Schubert, Thomas Breinlinger & Torsten Kraft. (2016) A DEM contact model for history-dependent powder flows. Computational Particle Mechanics 3:4, pages 437-448.
Crossref
I. Yu. Prikhod?ko, M. A. Dedik, K. A. Gogaev, V. S. Voropaev & A. I. Itsenko. (2016) Finite-Element Optimization of the Asymmetric Rolling Process for Titanium Powder. Powder Metallurgy and Metal Ceramics 55:1-2, pages 12-18.
Crossref
Yoshihiro TANAKA, Kinya KAWASE & Hajime KOHNO. (2016) Influence of Powder Compact Geometry on Micro Crack Formation on Boss near the Corner of a Step during Compaction. Journal of the Japan Society of Powder and Powder Metallurgy 63:2, pages 70-76.
Crossref
Jonathan Seville & Chuan-Yu Wu. 2016. Particle Technology and Engineering. Particle Technology and Engineering 243 277 .
Jonathan Seville & Chuan-Yu Wu. 2016. Particle Technology and Engineering. Particle Technology and Engineering 135 159 .
R. Abedinzadeh, S.M. Safavi & F. Karimzadeh. (2015) Finite Element modeling of Microwave-Assisted Hot Press process in a multimode furnace. Applied Mathematical Modelling 39:23-24, pages 7452-7468.
Crossref
Sean Garner, John Strong & Antonios Zavaliangos. (2015) The extrapolation of the Drucker–Prager/Cap material parameters to low and high relative densities. Powder Technology 283, pages 210-226.
Crossref
Hyunho Shin & Jong-Bong Kim. (2015) Physical interpretations for cap parameters of the modified Drucker-Prager cap model in relation to the deviator stress curve of a particulate compact in conventional triaxial testing. Powder Technology 280, pages 94-102.
Crossref
Xizhong An, Yilei Zhang, Yuxi Zhang & Shuo Yang. (2015) Finite Element Modeling on the Compaction of Copper Powder Under Different Conditions. Metallurgical and Materials Transactions A 46:8, pages 3744-3752.
Crossref
Hyunho Shin & Jong-Bong Kim. (2015) A numerical investigation on determining the failure strength of a powder compact in unconfined compression testing by considering the compressible character of the specimen. Powder Technology 277, pages 156-162.
Crossref
Chrysovalantis Tsigginos, John Strong & Antonios Zavaliangos. (2015) On the force–displacement law of contacts between spheres pressed to high relative densities. International Journal of Solids and Structures 60-61, pages 17-27.
Crossref
Hyunho Shin, Jong-Bong Kim, Seong-Jun Kim & Kyong Yop Rhee. (2015) A simulation-based determination of cap parameters of the modified Drucker–Prager cap model by considering specimen barreling during conventional triaxial testing. Computational Materials Science 100, pages 31-38.
Crossref
Stanley G. Selig & Darrel A. Doman. (2015) Finite Element Simulation of the Compaction and Springback of Alumix 321 PM Alloy. Journal of Applied Mathematics 2015, pages 1-7.
Crossref
Mingtu Jia & Deliang Zhang. 2015. Titanium Powder Metallurgy. Titanium Powder Metallurgy 183 200 .
Alexander Krok, Marián Peciar & Roman Fekete. (2014) Numerical investigation into the influence of the punch shape on the mechanical behavior of pharmaceutical powders during compaction. Particuology 16, pages 116-131.
Crossref
Erich H. Kisi, Christopher M. Wensrich, Vladimir Luzin & Oliver Kirstein. (2014) Stress Distribution in Iron Powder during Die Compaction. Materials Science Forum 777, pages 243-248.
Crossref
Yoshihiro Hayashi, Saori Otoguro, Takahiro MiuraYoshinori Onuki, Yasuko Obata & Kozo Takayama. (2014) Effect of Process Variables on the Drucker–Prager Cap Model and Residual Stress Distribution of Tablets Estimated by the Finite Element Method. Chemical and Pharmaceutical Bulletin 62:11, pages 1062-1072.
Crossref
Yoshihiro Hayashi, Takahiro Miura, Takuya Shimada, Yoshinori Onuki, Yasuko Obata & Kozo Takayama. (2013) Prediction of Tablet Characteristics from Residual Stress Distribution Estimated by the Finite Element Method. Journal of Pharmaceutical Sciences 102:10, pages 3678-3686.
Crossref
Jindan Zhang, Xu An Wang & Xiaoyuan Yang. (2013) Analysis and Improvements of Several (H)IBS/IBSC/PRBE Schemes. Journal of Computers 8:9.
Crossref
Hossein Kashani Zadeh, Jack Jeswiet & Il Yong Kim. (2013) Improvement in robustness and computational efficiency of material models for finite element analysis of metal powder compaction and experimental validation. The International Journal of Advanced Manufacturing Technology 68:5-8, pages 1785-1795.
Crossref
Rui ZHOU, Lian-hong ZHANG, Bai-yan HE & Yu-hong LIU. (2013) Numerical simulation of residual stress field in green power metallurgy compacts by modified Drucker–Prager Cap model. Transactions of Nonferrous Metals Society of China 23:8, pages 2374-2382.
Crossref
B.-A. Behrens, N. Vahed & M. Kammler. (2012) Functionalisation of PM components by integration of inherent data carriers and sensory elements. Production Engineering 7:1, pages 123-129.
Crossref
C. M. Wensrich, E. H. Kisi, J. F. Zhang & O. Kirstein. (2012) Measurement and analysis of the stress distribution during die compaction using neutron diffraction. Granular Matter 14:6, pages 671-680.
Crossref
T. W. Stone & M. F. Horstemeyer. (2012) Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model. Journal of Nanoparticle Research 14:9.
Crossref
Rui Zhou, Lian Hong Zhang & Yu Hong Liu. (2012) Investigation of Residual Stress in Green Compacts of Metal Powder Using X-Ray Diffraction. Advanced Materials Research 554-556, pages 461-464.
Crossref
Myeong-Sik Jeong, Jun-Hwan Yoo, Sung-Han Rhim, Sang-Kon Lee & Soo-Ik Oh. (2012) A unified model for compaction and sintering behavior of powder processing. Finite Elements in Analysis and Design 53, pages 56-62.
Crossref
A. Bouguecha & B.-A. Behrens. (2012) Numerische und experimentelle Untersuchungen zum Matrizenpressen und Sintern von Aluminiumpulver. Materialwissenschaft und Werkstofftechnik 43:6, pages 511-519.
Crossref
S.A. Rolland, P. Mosbah, D.T. Gethin & R.W. Lewis. (2012) Lode dependency in the cold die powder compaction process. Powder Technology 221, pages 123-136.
Crossref
Samuel A. McDonald, David Harris & Philip J. Withers. (2012) In-situ X-ray microtomography study of the movement of a granular material within a die. International Journal of Materials Research 103:2, pages 162-169.
Crossref
J. A. Hernández, J. Oliver, J. C. Cante & R. Weyler. (2011) A robust approach to model densification and crack formation in powder compaction processes. International Journal for Numerical Methods in Engineering 87:8, pages 735-767.
Crossref
B.‐A. Behrens, H.‐J. Seidel, F. Lange & M. Kammler. (2011) Experimental and numerical investigations on powder pressing with superimposed oscillations of two materials. Materialwissenschaft und Werkstofftechnik 42:8, pages 705-711.
Crossref
J.A. Hernández, J. Oliver, J.C. Cante & R. Weyler. (2011) Numerical modeling of crack formation in powder forming processes. International Journal of Solids and Structures 48:2, pages 292-316.
Crossref
Sven Berg, P?r Jons?n & Hans-?ke H?ggblad. (2010) Experimental characterisation of CaCO3 powder mix for high-pressure compaction modelling. Powder Technology 203:2, pages 198-205.
Crossref
S A Rolland, D T Gethin, R W Lewis & J H Tweed. (2010) Failure risk in powder-compacted parts. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 224:3, pages 203-212.
Crossref
S.M. Tahir, A.K. Ariffin & M.S. Anuar. (2010) Finite element modelling of crack propagation in metal powder compaction using Mohr–Coulomb and Elliptical Cap yield criteria. Powder Technology 202:1-3, pages 162-170.
Crossref
Tuhin Sinha, Rahul Bharadwaj, Jennifer S. Curtis, Bruno C. Hancock & Carl Wassgren. (2010) Finite element analysis of pharmaceutical tablet compaction using a density dependent material plasticity model. Powder Technology 202:1-3, pages 46-54.
Crossref
P. Pizette, C.L. Martin, G. Delette, P. Sornay & F. Sans. (2010) Compaction of aggregated ceramic powders: From contact laws to fracture and yield surfaces. Powder Technology 198:2, pages 240-250.
Crossref
Tuhin Sinha, Jennifer S. Curtis, Bruno C. Hancock & Carl Wassgren. (2010) A study on the sensitivity of Drucker?Prager Cap model parameters during the decompression phase of powder compaction simulations. Powder Technology 198:3, pages 315-324.
Crossref
Arno Plankensteiner, Christian Grohs, Christian Feist, Robert Grill, August Schwaiger, Lo-renz S Sigl & Heinrich Kestler. (2010) Sparking new design ideas for electricity generation. Metal Powder Report 65:2, pages 26-29.
Crossref
Michael A. Giordano & Steven R. Schmid. 2010. Scanning Probe Microscopy in Nanoscience and Nanotechnology. Scanning Probe Microscopy in Nanoscience and Nanotechnology 867 914 .
S.A. McDonald, F. Motazedian, A.C.F. Cocks & P.J. Withers. (2009) Shear cracking in an Al powder compact studied by X-ray microtomography. Materials Science and Engineering: A 508:1-2, pages 64-70.
Crossref
M. B. Shtern. (2009) Elastic model of isotropic powder materials with different tensile and compressive properties. Powder Metallurgy and Metal Ceramics 48:5-6, pages 257-266.
Crossref
A. Mehrotra, B. Chaudhuri, A. Faqih, M.S. Tomassone & F.J. Muzzio. (2009) A modeling approach for understanding effects of powder flow properties on tablet weight variability. Powder Technology 188:3, pages 295-300.
Crossref
C. Bierwisch, T. Kraft, H. Riedel & M. Moseler. (2009) Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. Journal of the Mechanics and Physics of Solids 57:1, pages 10-31.
Crossref
Rodrigo Rossi, Marcelo Krajnc Alves & Hazim Ali Al‐Qureshi. (2008) A total Lagrangian framework for simulation of powder compaction process based on a smooth three‐surface Cap model and a mesh‐free method. International Journal for Numerical Methods in Engineering 75:12, pages 1457-1491.
Crossref
S.C. Lee & K.T. Kim. (2008) Densification behavior of nanocrystalline titania powder under cold compaction. Powder Technology 186:1, pages 99-106.
Crossref
E. M. Borisovskaya, V. A. Nazarenko, Yu. N. Podrezov, O. S. Koryak, Ya. I. Evich & V. F. Gorban’. (2008) Mechanical properties of powder titanium at different production stages. I. Densification curves for titanium powder billets. Powder Metallurgy and Metal Ceramics 47:7-8, pages 406-413.
Crossref
L.H. Han, J.A. Elliott, A.C. Bentham, A. Mills, G.E. Amidon & B.C. Hancock. (2008) A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders. International Journal of Solids and Structures 45:10, pages 3088-3106.
Crossref
H.A. Al-Qureshi, M.R.F. Soares, D. Hotza, M.C. Alves & A.N. Klein. (2008) Analyses of the fundamental parameters of cold die compaction of powder metallurgy. Journal of Materials Processing Technology 199:1-3, pages 417-424.
Crossref
M. Szanto, W. Bier, N. Frage, S. Hartmann & Z. Yosibash. (2008) Experimental based finite element simulation of cold isostatic pressing of metal powders. International Journal of Mechanical Sciences 50:3, pages 405-421.
Crossref
C.-Y. Wu, B.C. Hancock, A. Mills, A.C. Bentham, S.M. Best & J.A. Elliott. (2008) Numerical and experimental investigation of capping mechanisms during pharmaceutical tablet compaction. Powder Technology 181:2, pages 121-129.
Crossref
W. Bier, M.P. Dariel, N. Frage, S. Hartmann & O. Michailov. (2007) Die compaction of copper powder designed for material parameter identification. International Journal of Mechanical Sciences 49:6, pages 766-777.
Crossref
A. C. F. Cocks, D. T. Gethin, H. -Å. Häggblad, T. Kraft & O. Coube. 2007. Modelling of Powder Die Compaction. Modelling of Powder Die Compaction 43 64 .
A. C. F. Cocks. 2007. Modelling of Powder Die Compaction. Modelling of Powder Die Compaction 31 42 .
P. Brewin, O. Coube, J. A. Calero, H. Hodgson, R. Maassen & M. Satur. 2007. Modelling of Powder Die Compaction. Modelling of Powder Die Compaction 7 29 .
P. Brewin, O. Coube, D. T. Gethin, H. Hodgson & S. Rolland. 2007. Modelling of Powder Die Compaction. Modelling of Powder Die Compaction 243 258 .
Wolfgang Bier & Stefan Hartmann. (2006) A finite strain constitutive model for metal powder compaction using a unique and convex single surface yield function. European Journal of Mechanics - A/Solids 25:6, pages 1009-1030.
Crossref
D.M. Kremer & B.C. Hancock. (2006) Process Simulation in the Pharmaceutical Industry: A Review of Some Basic Physical Models. Journal of Pharmaceutical Sciences 95:3, pages 517-529.
Crossref
Adam T. Procopio & Antonios Zavaliangos. (2005) Simulation of multi-axial compaction of granular media from loose to high relative densities. Journal of the Mechanics and Physics of Solids 53:7, pages 1523-1551.
Crossref
H.A. Al-Qureshi, A. Galiotto & A.N. Klein. (2005) On the mechanics of cold die compaction for powder metallurgy. Journal of Materials Processing Technology 166:1, pages 135-143.
Crossref
Youssef Hammi, Tonya Y. Stone & Mark F. Horstemeyer. Constitutive Modeling of Metal Powder Behavior During Compaction. Constitutive Modeling of Metal Powder Behavior During Compaction.
C.-Y. Wu, O.M. Ruddy, A.C. Bentham, B.C. Hancock, S.M. Best & J.A. Elliott. (2005) Modelling the mechanical behaviour of pharmaceutical powders during compaction. Powder Technology 152:1-3, pages 107-117.
Crossref
D. Vallauri & G. Maizza. (2004) Simulation of Solid State Sintering through FE Modeling for the Optimum Design of 3D Parts. Advanced Engineering Materials 6:12, pages 952-957.
Crossref
A. K. Radchenko. (2004) Mechanical properties of unsintered pressing. I. Phenomenological relations for unsintered pressing strength. Powder Metallurgy and Metal Ceramics 43:9-10, pages 447-460.
Crossref
A. K. Radchenko. (2004) Mechanical properties of unsintered pressing. i. phenomenological relations for unsintered pressing strength. Powder Metallurgy and Metal Ceramics 43:9, pages 447-460.
Crossref
C.L Martin. (2004) Elasticity, fracture and yielding of cold compacted metal powders. Journal of the Mechanics and Physics of Solids 52:8, pages 1691-1717.
Crossref
J.C. Cunningham, I.C. Sinka & A. Zavaliangos. (2004) Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction. Journal of Pharmaceutical Sciences 93:8, pages 2022-2039.
Crossref
Y. Sheng, C.J. Lawrence, B.J. Briscoe & C. Thornton. (2004) Numerical studies of uniaxial powder compaction process by 3D DEM. Engineering Computations 21:2/3/4, pages 304-317.
Crossref
Torsten Kraft & Hermann Riedel. (2004) Numerical simulation of solid state sintering; model and application. Journal of the European Ceramic Society 24:2, pages 345-361.
Crossref
M Reiterer, T Kraft, U Janosovits & H Riedel. (2004) Finite element simulation of cold isostatic pressing and sintering of SiC components. Ceramics International 30:2, pages 177-183.
Crossref
Chuan-Yu Wu, Alan C.F. Cocks, Olivier T. Gillia & David A. Thompson. (2003) Experimental and numerical investigations of powder transfer. Powder Technology 138:2-3, pages 216-228.
Crossref
H. Hashimoto, Z.M. Sun & T. Abe. (2003) Deformation behavior of stainless steel particles under compressive load. Scripta Materialia 49:10, pages 997-1002.
Crossref
K. Hanini, E. Doege & R. Schmidt‐Jürgensen. (2003) Numerische und experimentelle Untersuchungen zum Pulverpressen von Aluminium. Materialwissenschaft und Werkstofftechnik 34:8, pages 729-735.
Crossref
I.C Sinka, J.C Cunningham & A Zavaliangos. (2003) The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker?Prager Cap model. Powder Technology 133:1-3, pages 33-43.
Crossref
Torsten Kraft. (2003) Optimizing press tool shapes by numerical simulation of compaction and sintering application to a hard metal cutting insert. Modelling and Simulation in Materials Science and Engineering 11:3, pages 381-400.
Crossref
Hitoshi Hashimoto, Zheng Ming Sun, Yong Ho Park & Toshihiko Abe. (2011) Model Simulation of Powder Compaction by Complex Mold Based on Deformation Behavior of Free Particles Measured by Compression Test. MRS Proceedings 759.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.