23
Views
29
CrossRef citations to date
0
Altmetric
Articles

Some Observations on Fatigue in Copper Single Crystals

Pages 177-181 | Published online: 18 Jul 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Chihiro Watanabe, Hailun Zhou & Norimitsu Koga. (2022) Rearrangement of fatigue dislocation structure in a pure-aluminium single crystal associated with change in deformation temperature. Philosophical Magazine 102:1, pages 60-68.
Read now
S.X. Li, X.W. Li, Z.F. Zhang, Z.G. Wang & K. Lu. (2002) On the formation of deformation bands in fatigued copper single crystals. Philosophical Magazine A 82:16, pages 3129-3147.
Read now
X.W. Li, Z.G. Wang & S.X. Li. (2000) Deformation bands in cyclically deformed copper single crystals. Philosophical Magazine A 80:8, pages 1901-1912.
Read now
J.M. Finney & C. Laird. (1975) Strain localization in cyclic deformation of copper single crystals. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 31:2, pages 339-366.
Read now

Articles from other publishers (25)

Tianchang Ma, Kentaro Chahara, Tomotaka Miyazawa & Toshiyuki Fujii. (2022) Formation of dislocation structures during cyclic deformation in near-[001] multiple-slip-oriented copper single crystals. International Journal of Fatigue 162, pages 106953.
Crossref
Tianchang Ma, Tomotaka Miyazawa & Toshiyuki Fujii. (2021) Crystallographic features of deformation-kink bands in coplanar-double-slip-oriented copper single crystals. Materials Characterization 177, pages 111151.
Crossref
Chihiro Watanabe, Shunsuke Yamazaki & Norimitsu Koga. (2021) Effects of cross-slip activity on low-cycle fatigue behavior and dislocation structure in pure aluminum single crystals with single-slip orientation. Materials Science and Engineering: A 815, pages 141221.
Crossref
P. Li & Z. F. Zhang. (2014) Physical origin of surface slip morphologies induced by regular self-organized dislocation patterns in fatigued copper single crystals. Journal of Applied Physics 115:3.
Crossref
Yang Zhou, Xiao-Wu Li & Rui-Qing Yang. (2008) Study of fatigue dislocation structures in [233] coplanar double-slip-oriented copper single crystals using SEM electronic channelling contrast. International Journal of Materials Research 99:9, pages 958-963.
Crossref
Xiao-Wu Li & Yang Zhou. (2007) SEM-ECC observations of dislocation structures in a cyclically deformed Cu single crystal oriented for [ $$\overline{2}23$$ ] conjugate double slip. Journal of Materials Science 42:12, pages 4716-4719.
Crossref
X.W Li, Z.G Wang & S.X Li. (1999) Cyclic deformation behavior of double-slip-oriented copper single crystals III: conjugate double slip orientation on 001–11 side of the stereographic triangle. Materials Science and Engineering: A 269:1-2, pages 166-174.
Crossref
X.W Li, Z.G Wang, G.Y Li, S.D Wu & S.X Li. (1998) Cyclic stress–strain response and surface deformation features of [011] multiple-slip-oriented copper single crystals. Acta Materialia 46:13, pages 4497-4505.
Crossref
X.W. Li, Y.M. Hu & Z.G. Wang. (1998) Investigation of dislocation structure in a cyclically deformed copper single crystal using electron channeling contrast technique in SEM. Materials Science and Engineering: A 248:1-2, pages 299-303.
Crossref
Bo Gong, Zhirui Wang, Daolun Chen & Zhongguang Wang. (1997) Investigation of macro deformation bands in fatigued [001] Cu single crystals by electron channeling contrast technique. Scripta Materialia 37:10, pages 1605-1610.
Crossref
Bo Gong, Zhirui Wang & Zhongguang Wang. (1997) Cyclic deformation behavior and dislocation structures of [001] copper single crystals—I Cyclic stress-strain response and surface feature. Acta Materialia 45:4, pages 1365-1377.
Crossref
B. Gong, Z.G. Wang & Y.W. Zhang. (1995) The cyclic deformation behavior of Cu single crystal oriented for double slip. Materials Science and Engineering: A 194:2, pages 171-178.
Crossref
Shouxin Li, Bo Gong & Zhongguang Wang. (1994) On the formation of deformation bands in fatigued copper single crystal with double slip. Scripta Metallurgica et Materialia 31:12, pages 1729-1734.
Crossref
Campbell Laird, Philip Charsley & Haël Mughrabi. (1986) Low energy dislocation structures produced by cyclic deformation. Materials Science and Engineering 81, pages 433-450.
Crossref
Renhui Wang & Haël Mughrabi. (1984) Secondary cyclic hardening in fatigued copper monocrystals and polycrystals. Materials Science and Engineering 63:2, pages 147-163.
Crossref
Z.S. Basinski, R. Pascual & S.J. Basinski. (1983) Low amplitude fatigue of copper single crystals—I. The role of the surface in fatigue failure. Acta Metallurgica 31:4, pages 591-602.
Crossref
B.S. Majumdar & S.J. Burns. (1982) Push-pull fatigue of LiF at elevated temperatures—II. Microstructures. Acta Metallurgica 30:9, pages 1751-1760.
Crossref
B. Ramaswami & T.W.F. Lau. (1980) Fatigue softening of AlMg single crystals. Materials Science and Engineering 46:2, pages 221-230.
Crossref
M. Saletore & R. Taggart. (1978) Role of deformation bands in fatigue crack nucleation and propagation in copper crystals. Materials Science and Engineering 36:2, pages 259-270.
Crossref
H. Mughrabi. (1978) The cyclic hardening and saturation behaviour of copper single crystals. Materials Science and Engineering 33:2, pages 207-223.
Crossref
S. KocańdaS. Kocańda. 1978. Fatigue failure of metals. Fatigue failure of metals 147 198 .
D. Kuhlmann-Wilsdorf & C. Laird. (1977) Dislocation behavior in fatigue. Materials Science and Engineering 27:2, pages 137-156.
Crossref
H. Nahm, J. Moteff & D.R. Diercks. (1977) Substructural development during low cycle fatigue of AISI 304 stainless steel at 649°C. Acta Metallurgica 25:2, pages 107-116.
Crossref
E.Y. Chen & E.A. StarkeJr.Jr.. (1976) The effect of ion plating on the low cycle fatigue behavior of copper single crystals. Materials Science and Engineering 24:2, pages 209-221.
Crossref
O.T Woo, B Ramaswami, O.A Kupcis & J.T McGrath. (1974) Fatigue deformation of copper single crystals containing alumina particles. Acta Metallurgica 22:4, pages 385-397.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.