328
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Basic creep models for 25Cr20NiNbN austenitic stainless steels

, &
Pages 355-359 | Received 27 Mar 2013, Accepted 24 Apr 2013, Published online: 22 Oct 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

J. M. Bai, Y. Yuan, P. Zhang, C. Z. Zhu, J. B. Yan & C. Y. You. (2019) Effect of Co on the microstructure evolution of modified HR3C austenitic heat-resistant steels during long-term ageing. Materials at High Temperatures 36:4, pages 344-353.
Read now
R. G. Faulkner, S. Vujic, F. Di Martino & S. C. Hogg. (2017) Modelling of creep and fracture properties of nickel based alloys. Materials Science and Technology 33:1, pages 121-128.
Read now
Stojan Vujic, Rolf Sandström & Christof Sommitsch. (2015) Precipitation evolution and creep strength modelling of 25Cr20NiNbN austenitic steel. Materials at High Temperatures 32:6, pages 607-618.
Read now
R. Sandström & P. Korzhavyi. (2014) Use of elastic constants based on ab initio computation in materials optimisation of austenitic stainless steels. Canadian Metallurgical Quarterly 53:3, pages 282-291.
Read now
. (2013) Editorial. Materials Research Innovations 17:5, pages 298-299.
Read now

Articles from other publishers (21)

Jun-Jing He, Rolf Sandström, Jing Zhang & Hai-Ying Qin. (2023) The role of strength distributions for premature creep failure. Journal of Materials Research and Technology 25, pages 3444-3457.
Crossref
Yafei Li, Weijian Chen, Chuanyang Lu, Huaxin Li, Wenjian Zheng, Yinghe Ma, Ying Jin, Weiya Jin, Zengliang Gao, Jianguo Yang & Yanming He. (2022) Microstructural evolution mediated creep deformation mechanism for the AlCoCrFeNi2.1 eutectic high-entropy alloy under different testing conditions. Materials Science and Engineering: A 857, pages 144100.
Crossref
Jing Zhang, Pavel A. Korzhavyi & Junjing He. (2021) First-principles modeling of solute effects on thermal properties of nickel alloys. Materials Today Communications 28, pages 102551.
Crossref
Shouxing Yang, Huabing Li, Hao Feng, Xuze Li, Zhouhua Jiang & Tong He. (2021) Nitrogen Solubility in Liquid Fe–Nb, Fe–Cr–Nb, Fe–Ni–Nb and Fe–Cr–Ni–Nb Alloys. ISIJ International 61:5, pages 1498-1505.
Crossref
L. Huang, M. Sauzay, Y. Cui & P. Bonnaille. (2021) Theoretical and experimental study of creep damage in alloy 800 at high temperature. Materials Science and Engineering: A 813, pages 140953.
Crossref
Jing Zhang, Pavel A. Korzhavyi & Junjing He. (2020) Investigation on elastic and thermodynamic properties of Fe25Cr20NiMnNb austenitic stainless steel at high temperatures from first principles. Computational Materials Science 185, pages 109973.
Crossref
Jing Zhang & Pavel A. Korzhavyi. (2020) First Principles Investigation on Thermodynamic Properties and Stacking Fault Energy of Paramagnetic Nickel at High Temperatures. Metals 10:3, pages 319.
Crossref
Yang Lu, Qing Wang, Donghui Wen, Chuang Dong, Ruiqian Zhang & Peter K. Liaw. (2020) Microstructural stability of Ta minor-alloying HR3C stainless steel at 973 K. Materials Chemistry and Physics 239, pages 122306.
Crossref
Junjing He & Rolf Sandström. (2019) Application of Fundamental Models for Creep Rupture Prediction of Sanicro 25 (23Cr25NiWCoCu). Crystals 9:12, pages 638.
Crossref
Fangfei Sui & Rolf Sandström. (2018) Creep strength contribution due to precipitation hardening in copper–cobalt alloys. Journal of Materials Science 54:2, pages 1819-1830.
Crossref
Fangfei Sui, Rolf Sandström & Rui Wu. (2018) Creep tests on notched specimens of copper. Journal of Nuclear Materials 509, pages 62-72.
Crossref
Seok Jun Kang, Hoomin Lee, Jae Boong Choi & Moon Ki Kim. (2018) Modified Dyson Continuum Damage Model for Austenitic Steel Alloy. Journal of Pressure Vessel Technology 140:4.
Crossref
Junjing He & Rolf Sandström. (2017) Basic modelling of creep rupture in austenitic stainless steels. Theoretical and Applied Fracture Mechanics 89, pages 139-146.
Crossref
Rolf Sandström. (2016) Influence of phosphorus on the tensile stress strain curves in copper. Journal of Nuclear Materials 470, pages 290-296.
Crossref
Rolf Sandström. (2015) Fundamental Models for Creep Properties of Steels and Copper. Transactions of the Indian Institute of Metals 69:2, pages 197-202.
Crossref
Junjing He & Rolf Sandström. (2015) Modelling grain boundary sliding during creep of austenitic stainless steels. Journal of Materials Science 51:6, pages 2926-2934.
Crossref
Junjing He & Rolf Sandström. (2016) Brittle rupture of austenitic stainless steels due to creep cavitation. Procedia Structural Integrity 2, pages 863-870.
Crossref
J. ZurekS.-M. YangD.-Y. LinT. HüttelL. SingheiserW. J. Quadakkers. (2015) Microstructural stability and oxidation behavior of Sanicro 25 during long-term steam exposure in the temperature range 600-750 °C. Materials and Corrosion 66:4, pages 315-327.
Crossref
P.A. Korzhavyi & R. Sandström. (2015) First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength. Materials Science and Engineering: A 626, pages 213-219.
Crossref
Stanisław Lalik. (2015) Tests of Welded Joints of New Generation Austenitic, Stainless Steel HR3C. Solid State Phenomena 226, pages 65-68.
Crossref
R. Sandström. 2014. Coal Power Plant Materials and Life Assessment. Coal Power Plant Materials and Life Assessment 127 146 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.