431
Views
43
CrossRef citations to date
0
Altmetric
Original Article

Fabrication of biomedical Ti–35Nb–7Zr–5Ta alloys by mechanical alloying and spark plasma sintering

, , , &
Pages 65-70 | Received 05 May 2011, Accepted 07 Aug 2011, Published online: 12 Nov 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Nattawood Suesawadwanid, Anak Khantachawana, Kasama Srirussamee & Katsuyoshi Kondoh. (2022) Effect of Nb Content and water quenching on microstructure and mechanical properties of Ti-Nb alloys fabricated by spark plasma sintering. Powder Metallurgy 65:5, pages 426-438.
Read now
Sumit Bahl, Satyam Suwas & Kaushik Chatterjee. (2021) Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials. International Materials Reviews 66:2, pages 114-139.
Read now
A. Amigó, J. Zambrano, S. Martinez & V. Amigó. (2014) Microstructural characterisation of Ti–Nb–(Fe–Cr) alloys obtained by powder metallurgy. Powder Metallurgy 57:5, pages 316-319.
Read now

Articles from other publishers (40)

Yeganeh Moayedee, Leila Nikzad, Omid Fakhraei, Zeynab Paykar & Elaheh Zekavat. (2024) Improvement of mechanical, biological, and electrochemical properties of Ti6Al4V alloy modified with Nb and Ag for biomedical applications. Journal of Alloys and Compounds 972, pages 172736.
Crossref
Samuel Olukayode Akinwamide, Sven Bossuyt, Eric A.K. Fangnon, Ojo Jeremiah Akinribide & Peter Apata Olubambi. (2023) Characterization of pulse electric current sintered Ti-6Al-4V ternary composites: Role of YSZ-Si3N4 ceramics addition on structural modification and hydrogen desorption. Materials Today Communications 36, pages 106706.
Crossref
Tomoyuki Homma & Takashi Washizu. (2023) Microstructural Control by Cooling Rate in β-type and Sintered Ti-3.6Fe-5Zr-0.2B (Mass%) Alloy Fabricated by Spark Plasma Sintering and Heat Treatment. Crystals 13:8, pages 1184.
Crossref
Amit Bandyopadhyay, Indranath Mitra, Stuart B. Goodman, Mukesh Kumar & Susmita Bose. (2023) Improving biocompatibility for next generation of metallic implants. Progress in Materials Science 133, pages 101053.
Crossref
Galih Senopati, Rizwan Abdul Rahman Rashid, Ika Kartika & Suresh Palanisamy. (2023) Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications: A Review. Metals 13:2, pages 194.
Crossref
Qing Zhu, Peng Chen, Qiushuo Xiao, Fengxian Li, Jianhong Yi, Konda Gokuldoss Prashanth & Jürgen Eckert. (2022) Mechanical Properties and Microstructural Evolution of Ti-25Nb-6Zr Alloy Fabricated by Spark Plasma Sintering at Different Temperatures. Metals 12:11, pages 1824.
Crossref
Oktay Yigit, Burak Dikici, Mosab Kaseem, Masaaki Nakai & Mitsuo Niinomi. (2022) Facile formation with HA/Sr–GO-based composite coatings via green hydrothermal treatment on β-type TiNbTaZr alloys: Morphological and electrochemical insights. Journal of Materials Research 37:16, pages 2512-2524.
Crossref
Jiří Kozlík, Dalibor Preisler, Josef Stráský, Tereza Košutová, Cinthia Antunes Corrêa, Jozef Veselý, Lucie Bodnárová, František Lukáč, Tomáš Chráska & Miloš Janeček. (2022) Manufacturing of biomedical Ti alloys with controlled oxygen content by blended elemental powder metallurgy. Journal of Alloys and Compounds 905, pages 164259.
Crossref
Jiang Wu, Xiao Tan, Xuguang An, Jing Zhang, Yi Guo, Jia Liu, Yuanqi Luo, Weitang Yao, Qingquan Kong & Qingyuan Wang. (2022) Development of biomedical Ti-Nb-Zr-Mn alloys with enhanced mechanical properties and corrosion resistance. Materials Today Communications 30, pages 103027.
Crossref
Thato Sharon Tshephe, Samuel Olukayode Akinwamide, Eugene Olevsky & Peter Apata Olubambi. (2022) Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, and prospects. Heliyon 8:3, pages e09041.
Crossref
M. A. Hussein. (2022) Synthesis, Characterization, and Surface Analysis of Near-β Ti20Nb20Zr Alloy Proceeded by Powder Metallurgy for Biomedical Applications. JOM 74:3, pages 924-930.
Crossref
Mohamad Rodzi SITI NUR HAZWANI, Ling Xin LIM, Zainovia LOCKMAN & Hussain ZUHAILAWATI. (2022) Fabrication of titanium-based alloys with bioactive surface oxide layer as biomedical implants: Opportunity and challenges. Transactions of Nonferrous Metals Society of China 32:1, pages 1-44.
Crossref
H.Z. Lu, H.W. Ma, X. Luo, Y. Wang, J. Wang, R. Lupoi, S. Yin & C. Yang. (2021) Microstructure, shape memory properties, and in vitro biocompatibility of porous NiTi scaffolds fabricated via selective laser melting. Journal of Materials Research and Technology 15, pages 6797-6812.
Crossref
Mariana Correa Rossi, Eber de Santi Gouvêa, Montserrat Vicenta Haro Rodríguez, Margarida Juri Saeki, Angel Vicente Escuder & Vicente Amigó Borrás. (2021) Study of the current density of the electrical resistance sintering technique on microstructural and mechanical properties in a β Ti-Nb-Sn ternary alloy. Applied Physics A 127:10.
Crossref
L.M. Kang, X. Pang, H.G. Tan, Y.F. Qiu, H.L. Liu, X.C. Luo, Z.J. Li & C. Yang. (2021) Microstructure and mechanical properties of TiNbFeCoAl alloys prepared by semi-solid sintering assisted by thermo-mechanical field. Vacuum 190, pages 110316.
Crossref
Qiang Li, Hao Sun, Junjie Li, Xufeng Yuan, Masaaki Nakai, Mitsuo Niinomi & Takayoshi Nakano. (2021) Influence of Sintering Temperature on Mechanical Properties of Ti-Nb-Zr-Fe Alloys Prepared by Spark Plasma Sintering. Journal of Materials Engineering and Performance 30:8, pages 5719-5727.
Crossref
Ahmad Farrahnoor & Hussain Zuhailawati. (2021) Review on the mechanical properties and biocompatibility of titanium implant: The role of niobium alloying element. International Journal of Materials Research 112:6, pages 505-513.
Crossref
Damian Kalita, Łukasz Rogal, Katarzyna Berent, Anna Góral & Jan Dutkiewicz. (2021) Effect of Mo and Ta on the Mechanical and Superelastic Properties of Ti-Nb Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials 14:10, pages 2619.
Crossref
Dhyah Annur, Ika Kartika, Sugeng Supriadi & Bambang Suharno. (2021) Titanium and titanium based alloy prepared by spark plasma sintering method for biomedical implant applications—a review. Materials Research Express 8:1, pages 012001.
Crossref
Anna Veverková, Jiří Kozlík, Kristína Bartha, Tereza Košutová, Cinthia Antunes Correa, Hanka Becker, Tomáš Chráska, Miloš Janeček & Josef Stráský. (2021) Preparation of bulk Ti 15Mo alloy using cryogenic milling and spark plasma sintering. Materials Characterization 171, pages 110762.
Crossref
Sheila Lascano, Ricardo Chávez-Vásconez, Daniela Muñoz-Rojas, Juliet Aristizabal, Bárbara Arce, Carolina Parra, Cristian Acevedo, Nicole Orellana, Mauricio Reyes-Valenzuela, Francisco José Gotor, Cristina Arévalo & Yadir Torres. (2020) Graphene-coated Ti-Nb-Ta-Mn foams: A promising approach towards a suitable biomaterial for bone replacement. Surface and Coatings Technology 401, pages 126250.
Crossref
Liang-Yu Chen, Yu-Wei Cui & Lai-Chang Zhang. (2020) Recent Development in Beta Titanium Alloys for Biomedical Applications. Metals 10:9, pages 1139.
Crossref
Damian Kalita, Łukasz Rogal, Tomasz Czeppe, Anna Wójcik, Aleksandra Kolano-Burian, Przemysław Zackiewicz, Bogusz Kania & Jan Dutkiewicz. (2019) Microstructure and Mechanical Properties of Ti-Nb Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering. Journal of Materials Engineering and Performance 29:3, pages 1445-1452.
Crossref
Chennakesava Sai Pitchi, Amrita Priyadarshini, Ganesh Sana & Suresh Kumar Reddy Narala. (2020) A review on alloy composition and synthesis of β-Titanium alloys for biomedical applications. Materials Today: Proceedings 26, pages 3297-3304.
Crossref
Nicholas Mavros, Taban Larimian, Javier Esqivel, Rajeev Kumar Gupta, Rodrigo Contieri & Tushar Borkar. (2019) Spark plasma sintering of low modulus titanium-niobium-tantalum-zirconium (TNTZ) alloy for biomedical applications. Materials & Design 183, pages 108163.
Crossref
Qiang Li, Xufeng Yuan, Junjie LiPan Wang, Masaaki Nakai, Mitsuo Niinomi, Takayoshi Nakano, Akihiko Chiba, Xuyan Liu & Deng Pan. (2019) Effects of Fe on Microstructures and Mechanical Properties of Ti–15Nb–25Zr–(0, 2, 4, 8)Fe Alloys Prepared by Spark Plasma Sintering. MATERIALS TRANSACTIONS 60:9, pages 1763-1768.
Crossref
Aijun Chen, Hao Deng, Longqing Chen, Yongqiang Wei, Zuxi Xia & Jun Tang. (2018) Structure and Mechanical Properties of Low Doped-Zr TC4 Alloy Prepared by Spark Plasma Sintering. Advanced Engineering Materials 20:12, pages 1800739.
Crossref
Navdeep Singh & Harmesh Kumar. (2018) Fabrication of Ti-25Ni-25W Alloy by Mechanical Alloying and Spark Plasma Sintering for Biomedical Applications. Materials Today: Proceedings 5:14, pages 28288-28295.
Crossref
Bharat Bhushan, Amandeep Singh, Ramandeep Singh, J.S. Mehta, Anjali Gupta & Chander Prakash. (2018) Fabrication and Characterization of a New Range of β-type Ti-Nb-Ta-Zr-xHaP (x=0, 10) Alloy by Mechanical Alloying and Spark Plasma Sintering for Biomedical Applications. Materials Today: Proceedings 5:14, pages 27749-27756.
Crossref
Ramandeep Singh, Bhupinder Pal Singh, Anjali Gupta & Chander Prakash. (2017) Fabrication and characterization of Ti-Nb-HA alloy by mechanical alloying and spark plasma sintering for hard tissue replacements. IOP Conference Series: Materials Science and Engineering 225, pages 012051.
Crossref
Abdollah Bahador, Esah Hamzah, Katsuyoshi Kondoh, Tuty Asma Abu Bakar, Farazila Yusof, Hisashi Imai, Safaa N. Saud & Mustafa K. Ibrahim. (2017) Effect of deformation on the microstructure, transformation temperature and superelasticity of Ti–23 at% Nb shape-memory alloys. Materials & Design 118, pages 152-162.
Crossref
Dongmei Zhang, Cynthia S Wong, Cuie Wen & Yuncang Li. (2017) Cellular responses of osteoblast-like cells to 17 elemental metals. Journal of Biomedical Materials Research Part A 105:1, pages 148-158.
Crossref
Larissa N. Miotto, Laiza M.G. Fais, Ana L.R. Ribeiro & Luís G. Vaz. (2016) Surface properties of Ti-35Nb-7Zr-5Ta. The Journal of Prosthetic Dentistry 116:1, pages 102-111.
Crossref
M.A. Hussein, C. Suryanarayana & N. Al-Aqeeli. (2015) Fabrication of nano-grained Ti–Nb–Zr biomaterials using spark plasma sintering. Materials & Design 87, pages 693-700.
Crossref
L.H. Liu, C. Yang, Y.G. Yao, F. Wang, W.W. Zhang, Y. Long & Y.Y. Li. (2015) Densification mechanism of Ti-based metallic glass powders during spark plasma sintering process. Intermetallics 66, pages 1-7.
Crossref
Tushar Borkar, Soumya Nag, Yang Ren, Jaimie Tiley & Rajarshi Banerjee. (2014) Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites. Journal of Alloys and Compounds 617, pages 933-945.
Crossref
Liming Zou, Linju Zhou, Chao Yang, Shenguan Qu & Yuanyuan Li. (2014) Unusual dry sliding tribological behavior of biomedical ultrafine-grained TiNbZrTaFe composites fabricated by powder metallurgy. Journal of Materials Research 29:7, pages 902-909.
Crossref
M. Yan, M. Qian, C. Kong & M.S. Dargusch. (2014) Impacts of trace carbon on the microstructure of as-sintered biomedical Ti–15Mo alloy and reassessment of the maximum carbon limit. Acta Biomaterialia 10:2, pages 1014-1023.
Crossref
L.M. Zou, Y.H. Li, C. Yang, S.G. Qu & Y.Y. Li. (2013) Effect of Fe content on glass-forming ability and crystallization behavior of a (Ti69.7Nb23.7Zr4.9Ta1.7)100−xFex alloy synthesized by mechanical alloying. Journal of Alloys and Compounds 553, pages 40-47.
Crossref
Y.Y. Li, L.M. Zou, C. Yang, Y.H. Li & L.J. Li. (2013) Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering. Materials Science and Engineering: A 560, pages 857-861.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.