231
Views
69
CrossRef citations to date
0
Altmetric
Articles

Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: effect of Na2O concentration and modulus

, , &
Pages 201-208 | Published online: 18 Jul 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Nurulhuda Nadziri, Idawati Ismail & Sinin Hamdan. (2018) Binding gel characterization of alkali-activated binders based on palm oil fuel ash (POFA) and fly ash. Journal of Sustainable Cement-Based Materials 7:1, pages 1-14.
Read now
Shahram Pourakbar & Bujang Kim Huat. (2017) A review of alternatives traditional cementitious binders for engineering improvement of soils. International Journal of Geotechnical Engineering 11:2, pages 206-216.
Read now
M M Tashima, L Soriano, J Monzó, M V Borrachero & J Payá. (2013) Novel geopolymeric material cured at room temperature. Advances in Applied Ceramics 112:4, pages 179-183.
Read now
Leon Black, Chris Cheeseman & Mark Tyrer. (2013) Non-Conventional Cementitious Binders. Advances in Applied Ceramics 112:4, pages 177-178.
Read now
Leon Black, Phil Purnell & Joanne Hill. (2010) Current themes in cement research. Advances in Applied Ceramics 109:5, pages 253-259.
Read now

Articles from other publishers (64)

Wenlin Tu, Guohao Fang, Biqin Dong & Mingzhong Zhang. (2023) Multiscale study of microstructural evolution in alkali-activated fly ash-slag paste at elevated temperatures. Cement and Concrete Composites 143, pages 105258.
Crossref
K. M. Prasanna, B. P. Sharath, Himanshu Choukade, K. N. Shivaprasad, B. B. Das & Gangadhar Mahesh. (2022) Research on Setting Time, Compressive Strength and Microstructure of Fly Ash-Based Geopolymer Mixture Containing Slag. Iranian Journal of Science and Technology, Transactions of Civil Engineering 47:3, pages 1503-1517.
Crossref
Ilhwan You, Doo-Yeol Yoo, Seung-Jung Lee, Yujin Lee & Goangseup Zi. (2023) A combination of liquid–crystal display glass powder and slag in alkali-activated material. Construction and Building Materials 369, pages 130527.
Crossref
María Jimena de Hita & María Criado. (2023) Influence of superplasticizers on the workability and mechanical development of binary and ternary blended cement and alkali-activated cement. Construction and Building Materials 366, pages 130272.
Crossref
M. Ramadan, A.O. Habib, M.M. Hazem, M.S. Amin & Alaa Mohsen. (2023) Synergetic effects of hydrothermal treatment on the behavior of toxic sludge-modified geopolymer: Immobilization of cerium and lead, textural characteristics, and mechanical efficiency. Construction and Building Materials 367, pages 130249.
Crossref
Andres Arce, Anastasija Komkova, Jorn Van De Sande, Catherine G. Papanicolaou & Thanasis C. Triantafillou. (2022) Optimal Design of Ferronickel Slag Alkali-Activated Material for High Thermal Load Applications Developed by Design of Experiment. Materials 15:13, pages 4379.
Crossref
Banjo A. Akinyemi, Peter Adeniyi Alaba & A. Rashedi. (2022) Selected performance of alkali-activated mine tailings as cementitious composites: A review. Journal of Building Engineering 50, pages 104154.
Crossref
Y. Luo, S.H. Li, K.M. Klima, H.J.H. Brouwers & Qingliang Yu. (2022) Degradation mechanism of hybrid fly ash/slag based geopolymers exposed to elevated temperatures. Cement and Concrete Research 151, pages 106649.
Crossref
William Valencia-Saavedra, Rafael Robayo-Salazar & Ruby Mejía de Gutiérrez. (2021) Alkali-Activated Hybrid Cements Based on Fly Ash and Construction and Demolition Wastes Using Sodium Sulfate and Sodium Carbonate. Molecules 26:24, pages 7572.
Crossref
K. Chiranjeevi Reddy & Kolluru V.L. Subramaniam. (2021) Investigation on the roles of solution-based alkali and silica in activated low-calcium fly ash and slag blends. Cement and Concrete Composites 123, pages 104175.
Crossref
Jiufu Zhang, Ganghua Pan & Yun Yan. (2021) Early hydration, mechanical strength and drying shrinkage of low-carbon alkali-activated Ti-extracted residues-fly ash cement and mortars. Construction and Building Materials 293, pages 123517.
Crossref
Taewan Kim & Choonghyun Kang. (2021) Investigation of the Effect of Mixing Time on the Mechanical Properties of Alkali-Activated Cement Mixed with Fly Ash and Slag. Materials 14:9, pages 2301.
Crossref
Siva Uppalapati, Lucie Vandewalle & Özlem Cizer. (2021) Monitoring the setting process of alkali-activated slag-fly ash cements with ultrasonic P-wave velocity. Construction and Building Materials 271, pages 121592.
Crossref
Jonathan Cercel, Adeyemi Adesina & Sreekanta Das. (2021) Performance of eco-friendly mortars made with alkali-activated slag and glass powder as a binder. Construction and Building Materials 270, pages 121457.
Crossref
Lasyamayee Garanayak. (2021) Behavior of alkali activated fly ash slag paste at room temperature. Materials Today: Proceedings 43, pages 1865-1873.
Crossref
Mustafa Juma A. Mijarsh, Megat A. Megat Johari, Badorul H. Abu Bakar, Zainal A. Ahmad & Abdullah M. Zeyad. (2020) Influence of SiO 2 , Al 2 O 3 , CaO, and Na 2 O on the elevated temperature performance of alkali‐activated treated palm oil fuel ash‐based mortar . Structural Concrete 22:S1.
Crossref
Abdelilah Aboulayt, Faten Souayfan, Emmanuel Roziere, Reda Jaafri, Anass Cherki El Idrissi, Redouane Moussa, Christophe Justino & Ahmed Loukili. (2020) Alkali-activated grouts based on slag-fly ash mixtures: From early-age characterization to long-term phase composition. Construction and Building Materials 260, pages 120510.
Crossref
Thanh T. Nguyen, Chris I. Goodier & Simon A. Austin. (2020) Factors affecting the slump and strength development of geopolymer concrete. Construction and Building Materials 261, pages 119945.
Crossref
H.M. Khater. (2019) Hybrid slag geopolymer composites with durable characteristics activated by cement kiln dust. Construction and Building Materials 228, pages 116708.
Crossref
L.E. Menchaca-Ballinas & J.I. Escalante-Garcia. (2019) Low CO2 emission cements of waste glass activated by CaO and NaOH. Journal of Cleaner Production, pages 117992.
Crossref
Ali Rafeet, Raffaele Vinai, Marios Soutsos & Wei Sha. (2019) Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs). Cement and Concrete Research 122, pages 118-135.
Crossref
H. M. Khater. (2019) Valorization of cement kiln dust in activation and production of hybrid geopolymer composites with durable characteristics. Advanced Composites and Hybrid Materials 2:2, pages 301-311.
Crossref
Ming Xia, Faheem Muhammad, Linghao Zeng, Shan Li, Xiao Huang, Binquan Jiao, YanChyuan Shiau & Dongwei Li. (2019) Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. Journal of Cleaner Production 209, pages 1206-1215.
Crossref
Mohammad Ali Yazdi, Marco Liebscher, Simone Hempel, Jian Yang & Viktor Mechtcherine. (2018) Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature. Construction and Building Materials 191, pages 330-341.
Crossref
Ferdi Cihangir, Bayram Ercikdi, Ayhan Kesimal, Sinan Ocak & Yunus Akyol. (2018) Effect of sodium-silicate activated slag at different silicate modulus on the strength and microstructural properties of full and coarse sulphidic tailings paste backfill. Construction and Building Materials 185, pages 555-566.
Crossref
Meysam Najimi, Nader Ghafoori & Mohammadreza Sharbaf. (2018) Alkali-activated natural pozzolan/slag mortars: A parametric study. Construction and Building Materials 164, pages 625-643.
Crossref
Gediminas Kastiukas & Xiangming Zhou. (2017) Effects of waste glass on alkali-activated tungsten mining waste: composition and mechanical properties. Materials and Structures 50:4.
Crossref
Brant Walkley, Rackel San Nicolas, Marc-Antoine Sani, John D. Gehman, Jannie S.J. van Deventer & John L. Provis. (2016) Synthesis of stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders. Powder Technology 297, pages 17-33.
Crossref
Ricardo Martinez-Lopez & J. Ivan Escalante-Garcia. (2016) Alkali activated composite binders of waste silica soda lime glass and blast furnace slag: Strength as a function of the composition. Construction and Building Materials 119, pages 119-129.
Crossref
X. Gao, Q.L. Yu & H.J.H. Brouwers. (2016) Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Construction and Building Materials 119, pages 175-184.
Crossref
Oswaldo Burciaga-Díaz, Lauren Y. Gómez-Zamorano & José Iván Escalante-García. (2016) Influence of the long term curing temperature on the hydration of alkaline binders of blast furnace slag-metakaolin. Construction and Building Materials 113, pages 917-926.
Crossref
Sudip Kumar Sen, Madan Mohan Das, Partha Bandyopadhyay, R.R. Dash & Sangeeta Raut. (2016) Green process using hot spring bacterium to concentrate alumina in coal fly ash. Ecological Engineering 88, pages 10-19.
Crossref
Ahmed F. Abdalqader, Fei Jin & Abir Al-Tabbaa. (2016) Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. Journal of Cleaner Production 113, pages 66-75.
Crossref
X. Gao, Q.L. Yu & H.J.H. Brouwers. (2015) Characterization of alkali activated slag–fly ash blends containing nano-silica. Construction and Building Materials 98, pages 397-406.
Crossref
Ahmed F. Abdalqader, Fei Jin & Abir Al-Tabbaa. (2015) Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends. Construction and Building Materials 93, pages 506-513.
Crossref
Yubin Jun & Jae-Eun Oh. (2015) Microstructure and Strength of Class F Fly Ash based Geopolymer Containing Sodium Sulfate as an Additive. Journal of the Korea Concrete Institute 27:4, pages 443-450.
Crossref
Wen-Ten Kuo. (2015) Properties of compressed concrete paving units made produced using desulfurization slag. Environmental Progress & Sustainable Energy 34:5, pages 1365-1371.
Crossref
Francesco Messina, Claudio Ferone, Francesco Colangelo & Raffaele Cioffi. (2015) Low temperature alkaline activation of weathered fly ash: Influence of mineral admixtures on early age performance. Construction and Building Materials 86, pages 169-177.
Crossref
X. Gao, Q.L. Yu & H.J.H. Brouwers. (2015) Properties of alkali activated slag–fly ash blends with limestone addition. Cement and Concrete Composites 59, pages 119-128.
Crossref
X. Gao, Q.L. Yu & H.J.H. Brouwers. (2015) Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Construction and Building Materials 80, pages 105-115.
Crossref
Alaa M. Rashad. (2015) Influence of different additives on the properties of sodium sulfate activated slag. Construction and Building Materials 79, pages 379-389.
Crossref
N. Marjanović, M. Komljenović, Z. Baščarević, V. Nikolić & R. Petrović. (2015) Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceramics International 41:1, pages 1421-1435.
Crossref
Alaa M. Rashad. (2014) An exploratory study on alkali-activated slag blended with quartz powder under the effect of thermal cyclic loads and thermal shock cycles. Construction and Building Materials 70, pages 165-174.
Crossref
Hui Xu, Weiliang Gong, Larry Syltebo, Kevin Izzo, Werner Lutze & Ian L. Pegg. (2014) Effect of blast furnace slag grades on fly ash based geopolymer waste forms. Fuel 133, pages 332-340.
Crossref
J.I. Escalante-Garcia, P. Castro-Borges, A. Gorokhovsky & F.J. Rodriguez-Varela. (2014) Portland cement-blast furnace slag mortars activated using waterglass: Effect of temperature and alkali concentration. Construction and Building Materials 66, pages 323-328.
Crossref
Alaa M. Rashad. (2014) A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials & Design 53, pages 1005-1025.
Crossref
Idawati Ismail, Susan A. Bernal, John L. Provis, Rackel San Nicolas, Sinin Hamdan & Jannie S.J. van Deventer. (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites 45, pages 125-135.
Crossref
John L. Provis & Susan A. Bernal. 2014. Alkali Activated Materials. Alkali Activated Materials 125 144 .
John L. Provis, Peter Duxson, Elena Kavalerova, Pavel V. Krivenko, Zhihua Pan, Francisca Puertas & Jannie S. J. van Deventer. 2014. Alkali Activated Materials. Alkali Activated Materials 11 57 .
Alaa M. Rashad. (2013) A comprehensive overview about the influence of different additives on the properties of alkali-activated slag – A guide for Civil Engineer. Construction and Building Materials 47, pages 29-55.
Crossref
O. Burciaga-Díaz, M.R. Díaz-Guillén, A.F. Fuentes & J.I. Escalante-Garcia. (2013) Mortars of alkali-activated blast furnace slag with high aggregate:binder ratios. Construction and Building Materials 44, pages 607-614.
Crossref
Idawati Ismail, Susan A. Bernal, John L. Provis, Sinin Hamdan & Jannie S. J. van Deventer. (2012) Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Materials and Structures 46:3, pages 361-373.
Crossref
Alaa M. Rashad & Mervat H. Khalil. (2013) A preliminary study of alkali-activated slag blended with silica fume under the effect of thermal loads and thermal shock cycles. Construction and Building Materials 40, pages 522-532.
Crossref
A.M. Rashad, Y. Bai, P.A.M. Basheer, N.B. Milestone & N.C. Collier. (2013) Hydration and properties of sodium sulfate activated slag. Cement and Concrete Composites 37, pages 20-29.
Crossref
Oswaldo Burciaga-Diaz, Jose Ivan Escalante-Garcia & Alexander Gorokhovsky. (2012) Geopolymers based on a coarse low-purity kaolin mineral: Mechanical strength as a function of the chemical composition and temperature. Cement and Concrete Composites 34:1, pages 18-24.
Crossref
Alaa M. Rashad & Sayieda R. Zeedan. (2011) The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Construction and Building Materials 25:7, pages 3098-3107.
Crossref
Zahra Naghizadeh, Mohammad M. Faezipour, Ghanbar Ebrahimi & Yahya Hamzeh. (2011) Fabrication of lignocellulosic fiber–cement composite board and determination of optimum quantities of additives. Journal of the Indian Academy of Wood Science 8:1, pages 37-45.
Crossref
Adriana Medina, Prócoro Gamero, Xavier Querol, Natalia Moreno, Beatriz De León, Manuel Almanza, Gregorio Vargas, María Izquierdo & Oriol Font. (2010) Fly ash from a Mexican mineral coal I: Mineralogical and chemical characterization. Journal of Hazardous Materials 181:1-3, pages 82-90.
Crossref
R. Arellano Aguilar, O. Burciaga Díaz & J.I. Escalante García. (2010) Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Construction and Building Materials 24:7, pages 1166-1175.
Crossref
A. V. Gorokhovskii, D. V. Meshcheryakov, I. N. Burmistrov, D. S. Spiricheva, J. I. Escalante-Garcia & F. Puertas. (2010) Heat-insulating material based on cullet subjected to mechanochemical activation. Glass and Ceramics 67:1-2, pages 6-9.
Crossref
O.A. Martinez-Aguilar, P. Castro-Borges & J.I. Escalante-García. (2010) Hydraulic binders of Fluorgypsum–Portland cement and blast furnace slag, stability and mechanical properties. Construction and Building Materials 24:5, pages 631-639.
Crossref
J.I. Escalante-Garcia, L.J. Espinoza-Perez, A. Gorokhovsky & L.Y. Gomez-Zamorano. (2009) Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of Portland cement and as an alkali activated cement. Construction and Building Materials 23:7, pages 2511-2517.
Crossref
Maurice Guerrieri & Jay G. Sanjayan. (2009) Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire and Materials, pages n/a-n/a.
Crossref
Maria Criado & Maria Jimena de Hita. (2022) Influence of Superplasticizers on the Workability and Mechanical Development of Binary and Ternary Blended Cement and Alkali-Activated Cement. SSRN Electronic Journal.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.