Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 53, 2014 - Issue 3
1,061
Views
51
CrossRef citations to date
0
Altmetric
Original Article

High modulus steels: new requirement of automotive market. How to take up challenge?

, &
Pages 243-252 | Received 05 Dec 2013, Accepted 25 Apr 2014, Published online: 16 Jun 2014

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Silani Sahoo, Bharat Bhushan Jha & Animesh Mandal. (2021) Powder metallurgy processed TiB2-reinforced steel matrix composites: a review. Materials Science and Technology 37:14, pages 1153-1173.
Read now
Sajjad Amirkhanlou & Shouxun Ji. (2020) A review on high stiffness aluminum-based composites and bimetallics. Critical Reviews in Solid State and Materials Sciences 45:1, pages 1-21.
Read now
S. Chen, P. Seda, M. Krugla & A. Rijkenberg. (2016) High-modulus steels reinforced with ceramic particles through ingot casting process. Materials Science and Technology 32:10, pages 992-1003.
Read now
Radhakanta Rana. (2014) High Modulus Steels. Canadian Metallurgical Quarterly 53:3, pages 241-242.
Read now

Articles from other publishers (47)

Manel DAMMAK, Abir BOUHAMED, Hanen JRAD & Fakhreddine DAMMAK. (2023) In situ experimental characterization and numerical investigation of Fe-TiB2 Steel Matrix Composite behavior considering fully coupled damage model: Simulation during incremental forming process. Materials Today Communications, pages 107741.
Crossref
Kai-yao Wang, Yu-jiao Ke, Jia-sheng Wang, Xin-gang Liu, Wen-wen Zhang, Ying Guo & Gen Sasaki. (2023) Systematic investigation of the microstructure evolution and dynamic recrystallization mechanisms of as-cast Fe–TiB2 composites under different hot deformation parameters. Journal of Materials Research and Technology 27, pages 2833-2846.
Crossref
André L. Vidilli, Francisco G. Coury, Gonzalo Gonzalez, Lucas B. Otani, Vicente Amigó & Claudemiro Bolfarini. (2023) Tailoring the Microstructure and Properties of Reinforced FeMnAlC Composites by In-Situ TiB2–TiC–M2B Formation. Metallurgical and Materials Transactions A.
Crossref
Pouya Tajdary, Khaoula Dorhmi, Léo Morin, Katell Derrien, Zehoua Hadjem-Hamouche, Chedly Braham & Jean-Pierre Chevalier. (2023) Characterization and modeling of the damage mechanisms in ductile steel metal-matrix composites: Application to virtual forming. Mechanics of Materials 184, pages 104741.
Crossref
Zengmin Shi, Kesheng Wang, Hao Xie, Lei Dai & Guangwei Zhao. (2023) Precipitation of ceramic particles in Fe-TiB2 and Fe-Ni-TiB2 cast steels during the sub-rapid solidification process. Journal of Alloys and Compounds 943, pages 169148.
Crossref
Shuai Feng, Shuai Guan, Shengbiao Zhang, Shahryar Mooraj, Matthew Luebbe, Xuesong Fan, Kevin A. Beyer, Tianyi Li, Jian Liu, Jian Kong, Peter K. Liaw, Haiming Wen, Simos Gerasimidis & Wen Chen. (2023) Ultrafine-grained Fe-TiB2 high-modulus nanocomposite steel with high strength and isotropic mechanical properties by laser powder bed fusion. Additive Manufacturing 70, pages 103569.
Crossref
Long Huang, Jia Liu, Xiangtao Deng & Zhaodong Wang. (2023) Study on the precipitation mechanisms of TiC particles in steel matrix composites fabricated by eutectic solidification. Materials Research Express 10:2, pages 026509.
Crossref
Ronghua Chen, Bochuan Li & Kang Xu. (2022) Effect of particle morphology on fatigue crack propagation mechanism of TiB2-reinforced steel matrix composites. Engineering Fracture Mechanics 274, pages 108752.
Crossref
Peng Chen, Xin Xu, Chao Lin, Fuming Yang, Jiachen Pang, Xiaowu Li & Hongliang Yi. (2022) Controlling Carbide Evolution to Improve the Ductility in High Specific Young’s Modulus Steels. Acta Metallurgica Sinica (English Letters) 35:10, pages 1703-1711.
Crossref
Fuming Yang, Peng Chen & Xiaowu Li. (2022) The Microstructure Evolution during Divorced Eutectoid Transformation in a κ-Carbide Reinforced High Specific Young’s Modulus Steel. Crystals 12:10, pages 1372.
Crossref
He Zhang, Feng Qiu, Hong-Yu Yang, Wen-Xin Wang, Shi-Li Shu & Qi-Chuan Jiang. (2022) Microstructure manipulation mechanism and mechanical properties improvement of H13 steel via trace nano-(TiC + TiB2) particles. Materials Characterization 188, pages 111924.
Crossref
P. Chen, J. Fu, X. Xu, C. Lin, J.C. Pang, X.W. Li, R.D.K. Misra, G.D. Wang & H.L. Yi. (2021) A high specific Young’s modulus steel reinforced by spheroidal kappa-carbide. Journal of Materials Science & Technology 87, pages 54-59.
Crossref
B. B. He & J. Q. Zhang. (2021) Size-Dependent Fracture of TiB2 Particles in a Steel Matrix Composite During Nanoindentation Investigation. Metallurgical and Materials Transactions A 52:10, pages 4311-4316.
Crossref
Ronghua Chen, Bochuan Li, Yizhuang Li, Xiaogang Wang, Chao Jiang & Mingxin Huang. (2021) Influences of particle fraction and characteristics on damage tolerance of TiB2-reinforced steel matrix composites. Materials Science and Engineering: A 823, pages 141736.
Crossref
J. Genée, N. Gey, F. Bonnet, R. A. Lebensohn & S. Berbenni. (2021) Experimental and numerical investigation of key microstructural features influencing the localization of plastic deformation in Fe-TiB2 metal matrix composite. Journal of Materials Science 56:19, pages 11278-11297.
Crossref
Y. Z. Li & M. X. Huang. (2021) TiB2-TiC Reinforced Martensitic Steel Fabricated by Conventional Solidification. Metallurgical and Materials Transactions A 52:6, pages 2144-2148.
Crossref
Mārtiņš Sarma, Ilmārs Grants, Thomas Herrmannsdörfer & Gunter Gerbeth. (2021) Contactless generation of cavitation in high temperature liquid metals and its impact on particle dispersion in solidified iron and steel samples. Journal of Materials Processing Technology 291, pages 117041.
Crossref
B.G. Wang, G.D. Wang, R.D.K. Misra & H.L. Yi. (2021) Increased hot-formability and grain-refinement by dynamic recrystallization of ferrite in an in situ TiB2 reinforced steel matrix composite. Materials Science and Engineering: A 812, pages 141100.
Crossref
C. Baron, H. Werner & H. Springer. (2021) On the effect of carbon content and tempering on mechanical properties and stiffness of martensitic Fe–18.8Cr–1.8B–xC high modulus steels. Materials Science and Engineering: A 809, pages 141000.
Crossref
Hauke Springer & Christian Baron. 2021. High-Performance Ferrous Alloys. High-Performance Ferrous Alloys 291 326 .
Bochuan Li, Kang Xu, Ronghua Chen, Yizhuang Li, Xiaogang Wang, Chao Jiang & M.X. Huang. (2020) On the fatigue crack propagation mechanism of a TiB2-reinforced high-modulus steel. Composites Part B: Engineering 190, pages 107960.
Crossref
Yujiao Ke, Kazuhiro Matsugi, Zhefeng Xu, Yongbum Choi, Mingzhi Wang & Jinku Yu. (2020) Spark Sintering of TiB<sub>2</sub> Reinforced Fe Matrix Composites with Both High Thermal Conductivity and Hardness, and Their Microstructural Characterizations. MATERIALS TRANSACTIONS 61:3, pages 548-556.
Crossref
H. Springer, C. Baron, F. Mostaghimi, J. Poveleit, L. Mädler & V. Uhlenwinkel. (2020) Additive manufacturing of high modulus steels: New possibilities for lightweight design. Additive Manufacturing 32, pages 101033.
Crossref
Ronghua Chen, Bochuan Li, Yizhuang Li, Zhicheng Liu, Xiangyun Long, Hongliang Yi, Xiaogang Wang, Chao Jiang & Mingxin Huang. (2020) Revealing the fatigue crack initiation mechanism of a TiB2-reinforced steel matrix composite. International Journal of Fatigue 130, pages 105276.
Crossref
Yujiao Ke, Kazuhiro Matsugi, Zhefeng Xu, Yu He, Yongbum Choi, Mingzhi Wang & Jinku Yu. (2019) Synthesis of 30 vol%TiB<sub>2</sub> Containing Fe–5Ti Matrix Composites with High Thermal Conductivity and Hardness. MATERIALS TRANSACTIONS 60:12, pages 2516-2524.
Crossref
Xiaohui Wang, Huanhui Leng, Bo Han, Xiao Wang, Bin Hu & Haiwen Luo. (2019) Solidified microstructures and elastic modulus of hypo-eutectic and hyper-eutectic TiB2-reinforced high-modulus steel. Acta Materialia 176, pages 84-95.
Crossref
Shouxun Ji, Fateme Amirkhanlu, Ali Mostaed & Richard Beanland. (2019) Atomic structure and interface chemistry in a high-stiffness and high-strength Al–Si–Mg/TiB2 nanocomposite. Materials Science and Engineering: A 763, pages 138072.
Crossref
Ding Wang, Pratheek Shanthraj, Hauke Springer & Dierk Raabe. (2018) Particle-induced damage in Fe–TiB2 high stiffness metal matrix composite steels. Materials & Design 160, pages 557-571.
Crossref
Y.Z. Li & M.X. Huang. (2018) Revealing the interfacial plasticity and shear strength of a TiB2-strengthened high-modulus low-density steel. Journal of the Mechanics and Physics of Solids 121, pages 313-327.
Crossref
Wei He, Bi-lei Wang, Yang Yang, Yun-hu Zhang, Lian Duan, Zhi-ping Luo, Chang-jiang Song & Qi-jie Zhai. (2018) Microstructure and mechanical behavior of a low-density Fe–12Mn–9Al–1.2C steel prepared using centrifugal casting under near-rapid solidification. Journal of Iron and Steel Research International 25:8, pages 830-838.
Crossref
Z. Hadjem-Hamouche, K. Derrien, E. Héripré & J.-P. Chevalier. (2018) In-situ experimental and numerical studies of the damage evolution and fracture in a Fe-TiB2 composite. Materials Science and Engineering: A 724, pages 594-605.
Crossref
C. Baron, H. Springer & D. Raabe. (2018) Development of high modulus steels based on the Fe – Cr – B system. Materials Science and Engineering: A 724, pages 142-147.
Crossref
M. Sarma, I. Grants, A. Bojarevics & G. Gerbeth. 2018. Metal-Matrix Composites Innovations, Advances and Applications. Metal-Matrix Composites Innovations, Advances and Applications 183 192 .
Sajjad Amirkhanlou & Shouxun Ji. 2018. Light Metals 2018. Light Metals 2018 431 433 .
H. Springer, C. Baron, A. Szczepaniak, V. Uhlenwinkel & D. Raabe. (2017) Stiff, light, strong and ductile: nano-structured High Modulus Steel. Scientific Reports 7:1.
Crossref
Z. C. Luo, B. B. He, Y. Z. Li & M. X. Huang. (2017) Growth Mechanism of Primary and Eutectic TiB2 Particles in a Hypereutectic Steel Matrix Composite. Metallurgical and Materials Transactions A 48:4, pages 1981-1989.
Crossref
Sajjad Amirkhanlou, Shouxun Ji, Yijie Zhang, Douglas Watson & Zhongyun Fan. (2017) High modulus Al Si Mg Cu/Mg2Si TiB2 hybrid nanocomposite: Microstructural characteristics and micromechanics-based analysis. Journal of Alloys and Compounds 694, pages 313-324.
Crossref
Sajjad Amirkhanlou, Yijie Zhang, Shouxun Ji & Zhongyun Fan. 2017. Light Metals 2017. Light Metals 2017 335 342 .
Y. Z. Li & M. X. Huang. 2017. Characterization of Minerals, Metals, and Materials 2017. Characterization of Minerals, Metals, and Materials 2017 453 460 .
C. Baron, H. Springer & D. Raabe. (2016) Combinatorial screening of the microstructure–property relationships for Fe–B–X stiff, light, strong and ductile steels. Materials & Design 112, pages 131-139.
Crossref
C. Baron, H. Springer & D. Raabe. (2016) Effects of Mn additions on microstructure and properties of Fe–TiB2 based high modulus steels. Materials & Design 111, pages 185-191.
Crossref
H. Zhang, H. Springer, R. Aparicio-Fernández & D. Raabe. (2016) Improving the mechanical properties of Fe – TiB2 high modulus steels through controlled solidification processes. Acta Materialia 118, pages 187-195.
Crossref
Y. Z. Li, Z. C. Luo, H. L. Yi & M. X. Huang. (2016) Damage Mechanisms of a TiB2-Reinforced Steel Matrix Composite for Lightweight Automotive Application. Metallurgical and Materials Transactions E 3:3, pages 203-208.
Crossref
C. Baron, H. Springer & D. Raabe. (2016) Efficient liquid metallurgy synthesis of Fe–TiB2 high modulus steels via in-situ reduction of titanium oxides. Materials & Design 97, pages 357-363.
Crossref
Sylvie Lartigue-Korinek, Michael Walls, Nadia Haneche, Limei Cha, Léo Mazerolles & Frédéric Bonnet. (2015) Interfaces and defects in a successfully hot-rolled steel-based composite Fe–TiB 2. Acta Materialia 98, pages 297-305.
Crossref
M.X. Huang, B.B. He, X. Wang & H.L. Yi. (2015) Interfacial plasticity of a TiB 2 -reinforced steel matrix composite fabricated by eutectic solidification. Scripta Materialia 99, pages 13-16.
Crossref
Radhakanta Rana, Chris Lahaye & Ranjit Kumar Ray. (2014) Overview of Lightweight Ferrous Materials: Strategies and Promises. JOM 66:9, pages 1734-1746.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.