89
Views
191
CrossRef citations to date
0
Altmetric
Articles

Current understanding of creep behaviour of near γ-titanium aluminides

Pages 197-217 | Published online: 18 Jul 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Daejin Kim, Dongyi Seo, Xiao Huang, Trevor Sawatzky, Henry Saari, Jaekeun Hong & Young-Won Kim. (2014) Oxidation behaviour of gamma titanium aluminides with or without protective coatings. International Materials Reviews 59:6, pages 297-325.
Read now
H. Zhu , D. Y. Seo, K. Maruyama & P. Au. (2005) Interfacial strengthening of β phase in a fully lamellar structure of TiAl alloy containing W. Philosophical Magazine Letters 85:7, pages 377-385.
Read now
Joël Malaplate, Daniel Caillard & Alain Couret . (2004) Interpretation of the stress dependence of creep by a mixed climb mechanism in TiAl. Philosophical Magazine 84:34, pages 3671-3687.
Read now
Young‐Won Kim. (1999) Advances in the fundamental understanding for designing engineering gamma TiAl alloys. Journal of the Chinese Institute of Engineers 22:1, pages 13-25.
Read now

Articles from other publishers (186)

HengGao Xiang, Yang Chen, ZhiXiang Qi, Gong Zheng, FengRui Chen, YueDe Cao, Xu Liu, Bing Zhou & Guang Chen. (2023) Mechanical behavior of TiAl alloys. Science China Technological Sciences 66:9, pages 2457-2480.
Crossref
Jiyao Liu, Laiqi Zhang & Gengwu Ge. (2022) Study of the Orientation Relationship of the Residual α2(Ti3Al) in γ(TiAl) Sheet After Heat Treatment. Journal of Materials Engineering and Performance 31:5, pages 4224-4231.
Crossref
Naga Sruthi Neelam, S. Banumathy, C.M. Omprakash, D.V.V. Satyanarayana, A. Bhattacharjee & G.V.S. Nageswara Rao. (2022) Compression and creep behaviour of Ti-46.5Al-xNb-yCr-zMo-0.3B (x=3.5, 5; y, z=0,1,2) alloys. Materials Science and Engineering: A 839, pages 142769.
Crossref
Shulong Xiao, Zhenquan Liang, Yunfei Zheng, Hao Zhao, Yingfei Guo, Lijuan Xu, Xiang Xue, Jing Tian & Yuyong Chen. (2022) The tensile creep behavior of a B4C-bearing high Nb containing TiAl alloy. Intermetallics 141, pages 107410.
Crossref
Sen Cui, Chunxiang Cui, Shichao Yang & Shuangjin Liu. (2022) Microstructure and mechanical properties of hybrid in-situ Ti2AlCw/ Mo2B5p reinforced TiAl alloy. Materials Science and Engineering: A 829, pages 142182.
Crossref
Anupam Neogi & Rebecca Janisch. (2021) Twin-boundary assisted crack tip plasticity and toughening in lamellar -TiAl . Acta Materialia 213, pages 116924.
Crossref
M. Umer Ilyas & M. Rizviul Kabir. (2021) Creep behaviour of two-phase lamellar TiAl: Crystal plasticity modelling and analysis. Intermetallics 132, pages 107129.
Crossref
Mainak Saha. (2021) A brief discussion on the tensile creep deformation behaviour of wrought single-phase γ-TiAl. Materials Today: Proceedings 46, pages 3187-3192.
Crossref
Naga Sruthi Neelam, S. Banumathy, G.V.S. Nageswara Rao & A. Bhattacharjee. (2021) Study of microstructure and mechanical properties of γ-Ti-46.5Al-2Cr-(3.5 & 5.0) Nb alloys. Materials Today: Proceedings 41, pages 1069-1072.
Crossref
Xi-wen Zhang, Yu-ling Tang, Wen-juan Wan, Chun-lei Zhu & Ji Zhang. (2020) Effect of carbon addition on creep behavior of cast TiAl alloy with hard-oriented directional lamellar microstructure. Journal of Iron and Steel Research International 27:11, pages 1347-1356.
Crossref
Boon Teoh Tan, Shunnian Wu, Franklin Anariba & Ping Wu. (2020) A DFT study on brittle-to-ductile transition of D022-TiAl3 using multi-doping and strain-engineered effects. Journal of Materials Science & Technology 51, pages 180-192.
Crossref
Juliano Soyama, Wolfgang Limberg, Thomas Ebel & Florian Pyczak. (2020) Sintering and Creep Resistance of Powder‐Metallurgy‐Processed Ti‐(43‐47)Al‐5Nb‐0.2B‐0.2C. Advanced Engineering Materials 22:8, pages 2000377.
Crossref
Sadiq Abiola Raji, Abimbola Patricia Idowu Popoola, Sisa Leslie Pityana & Olawale Muhammed Popoola. (2020) Characteristic effects of alloying elements on β solidifying titanium aluminides: A review. Heliyon 6:7, pages e04463.
Crossref
Vajinder Singh, Chandan Mondal, Rajdeep Sarkar, P.P. Bhattacharjee & P. Ghosal. (2020) Compressive creep behavior of a γ-TiAl based Ti–45Al–8Nb–2Cr-0.2B alloy: The role of β(B2)-phase and concurrent phase transformations. Materials Science and Engineering: A 774, pages 138891.
Crossref
Michael Burtscher, Thomas Klein, Svea Mayer, Helmut Clemens & Franz Dieter Fischer. (2019) The creep behavior of a fully lamellar γ-TiAl based alloy. Intermetallics 114, pages 106611.
Crossref
Hanliang Zhu, Yan Ma, Tao Wei, Huijun Li, Robert Aughterson & Gregory Lumpkin. (2019) The formation and Kr-ion irradiation behaviour of new microstructural features in additively manufactured titanium aluminium alloy. Additive Manufacturing 29, pages 100766.
Crossref
Young-Kyun Kim, Seong-June Youn, Seong-Woong Kim, Jaekeun Hong & Kee-Ahn Lee. (2019) High-temperature creep behavior of gamma Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting. Materials Science and Engineering: A 763, pages 138138.
Crossref
Boon Teoh Tan, Jia Zhang, Kostiantyn V. Sopiha & Ping Wu. (2019) Multi-Doping Effect on Ductility of TiAl3: A DFT Study. Metals and Materials International 25:4, pages 869-879.
Crossref
V. Juechter, M.M. Franke, T. Merenda, A. Stich, C. Körner & R.F. Singer. (2018) Additive manufacturing of Ti-45Al-4Nb-C by selective electron beam melting for automotive applications. Additive Manufacturing 22, pages 118-126.
Crossref
Teng Ye, Lin Song, Yongfeng Liang, Maohua Quan, Jianping He & Junpin Lin. (2018) Precipitation behavior of ωo phase and texture evolution of a forged Ti-45Al-8.5Nb-(W, B, Y) alloy during creep. Materials Characterization 136, pages 41-51.
Crossref
Takayuki Kitamura, Takashi Sumigawa, Takahiro Shimada & Le Van Lich. (2018) Challenge toward nanometer scale fracture mechanics. Engineering Fracture Mechanics 187, pages 33-44.
Crossref
R.K. Gupta & B. Pant. 2018. Intermetallic Matrix Composites. Intermetallic Matrix Composites 71 93 .
T. Klein, L. Usategui, B. Rashkova, M.L. Nó, J. San Juan, H. Clemens & S. Mayer. (2017) Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures. Acta Materialia 128, pages 440-450.
Crossref
F. Appel, R. Wagner & Vinod Kumar. 2017. Reference Module in Materials Science and Materials Engineering. Reference Module in Materials Science and Materials Engineering.
R. Tewari, N.K. Sarkar, D. Harish, B. Vishwanadh, G.K. Dey & S. Banerjee. 2017. Materials Under Extreme Conditions. Materials Under Extreme Conditions 293 335 .
Hamed Mofidi Tabatabaei & Tadashi Nishihara. (2016) Friction stir forming for mechanical interlocking of insulated copper wire and Zn-22Al superplastic alloy. Welding in the World 61:1, pages 47-55.
Crossref
Liang Cheng, Jinshan Li, Xiangyi Xue, Bin Tang, Hongchao Kou & Emmanuel Bouzy. (2016) General features of high temperature deformation kinetics for γ-TiAl-based alloys with DP/NG microstructures: Part I. A survey of mechanical data and development of unified rate-equations. Materials Science and Engineering: A 678, pages 389-401.
Crossref
M. Castillo-Rodríguez, M.L. Nó, J.A. Jiménez, O.A. Ruano & J. San Juan. (2016) High temperature internal friction in a Ti–46Al–1Mo–0.2Si intermetallic, comparison with creep behaviour. Acta Materialia 103, pages 46-56.
Crossref
Shulin Dong, Ruirun Chen, Jingjie Guo, Hongsheng Ding, Yanqing Su & Hengzhi Fu. (2015) Deformation behavior and microstructural evolution of directionally solidified TiAlNb-based alloy during thermo-compression at 1373–1573K. Materials & Design 84, pages 118-132.
Crossref
. 2015. Fundamentals of Creep in Metals and Alloys. Fundamentals of Creep in Metals and Alloys 301 332 .
Z.W. Huang & W. Hu. (2014) Thermal stability of an intermediate strength fully lamellar Ti–45Al–2Mn–2Nb-0.8 vol.% TiB2 alloy. Intermetallics 54, pages 49-55.
Crossref
M.G.D. Geers, M. Cottura, B. Appolaire, E.P. Busso, S. Forest & A. Villani. (2014) Coupled glide-climb diffusion-enhanced crystal plasticity. Journal of the Mechanics and Physics of Solids 70, pages 136-153.
Crossref
Hanliang Zhu, Tao Wei, David Carr, Robert Harrison, Lyndon Edwards, Dongyi Seo, Kouichi Maruyama & Matthew S. Dargusch. (2014) Microstructural design for thermal creep and radiation damage resistance of titanium aluminide alloys for high-temperature nuclear structural applications. Current Opinion in Solid State and Materials Science 18:5, pages 269-278.
Crossref
Hanliang Zhu, Tao Wei, Mark Blackford, Ken Short, David Carr, Robert Harrison, Lyndon Edwards, Dongyi Seo & Kouichi Maruyama. (2014) Irradiation behaviour of α2 and γ phases in He ion implanted titanium aluminide alloy. Intermetallics 50, pages 28-33.
Crossref
R. K. Gupta, Bhanu Pant & P. P. Sinha. (2013) Theory and Practice of γ + α2 Ti Aluminide: A Review. Transactions of the Indian Institute of Metals 67:2, pages 143-165.
Crossref
William Harrison, Zakaria Abdallah & Mark Whittaker. (2014) A Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb. Materials 7:3, pages 2194-2209.
Crossref
P. Schallow & H.-J. Christ. (2013) High-temperature fatigue behaviour of a second generation near-γ titanium aluminide sheet material under isothermal and thermomechanical conditions. International Journal of Fatigue 53, pages 15-25.
Crossref
Hanliang Zhu, Tao Wei, David Carr, Robert Harrison, Lyndon Edwards, Dongyi Seo & Kouichi Maruyama. (2013) A comparison of microstructural strengthening for thermal creep and radiation damage resistance of titanium aluminide alloys. Journal of Nuclear Materials 438:1-3, pages 190-192.
Crossref
R. Muñoz-Moreno, M. T. Pérez-Prado, E.M. Ruiz-Navas, C. J. Boehlert & J. Llorca. (2012) In situ SEM Observations of the Tensile-Creep Deformation Behavior and Fracture Mechanisms of a γ-TiAl Intermetallic Alloy at Low and High Stresses. . MRS Proceedings 1516, pages 65-70.
Crossref
Fritz Appel, Jonathan David Heaton Paul & Michael Oehring. 2011. Gamma Titanium Aluminide Alloys. Gamma Titanium Aluminide Alloys 313 356 .
Fritz Appel, Jonathan David Heaton Paul & Michael Oehring. 2011. Gamma Titanium Aluminide Alloys. Gamma Titanium Aluminide Alloys 573 682 .
Jean-Philippe Monchoux & Alain Couret. (2011) A microscopic study of the creep of a cast TiAl alloy at 750°C under 150MPa. Scripta Materialia 65:3, pages 198-201.
Crossref
Fritz Appel. 2010. Encyclopedia of Aerospace Engineering. Encyclopedia of Aerospace Engineering.
D. Peter, G.B. Viswanathan, A. Dlouhy & G. Eggeler. (2010) Analysis of local microstructure after shear creep deformation of a fine-grained duplex γ-TiAl alloy. Acta Materialia 58:19, pages 6431-6443.
Crossref
Dong Yi Seo, S. Bulmer, H. Saari & Peter Au. (2010) The Effects of Heat Treatments and Tungsten Additions on Microstructures and Tensile Properties of Powder Metallurgy Ti-48Al-2Nb-2Cr. Materials Science Forum 638-642, pages 1406-1411.
Crossref
Makoto Hasegawa, Yurika Hirosaki & Hiroshi Fukutomi. (2010) Effect of Formed Fine Grains on Creep Property in Lamellar Orientation Controlled TiAl Base Alloy Processed by a Two-Step Compression at High Temperature. Journal of the Japan Institute of Metals 74:7, pages 475-480.
Crossref
. 2010. High Temperature Deformation and Fracture of Materials. High Temperature Deformation and Fracture of Materials 111 138 .
Hanliang Zhu, D. Y. Seo & K. Maruyama. (2010) Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys. JOM 62:1, pages 64-69.
Crossref
L. Cao, H.W. Wang, C.M. Zou & Z.J. Wei. (2009) Microstructural characterization and micromechanical properties of dual-phase carbide in arc-melted titanium aluminide base alloy with carbon addition. Journal of Alloys and Compounds 484:1-2, pages 816-821.
Crossref
Wilfried Wallgram, Thomas Schmölzer, Limei Cha, Gopal Das, Volker Güther & Helmut Clemens. (2009) Technology and mechanical properties of advanced γ-TiAl based alloys. International Journal of Materials Research 100:8, pages 1021-1030.
Crossref
Dirk Herrmann & Fritz Appel. (2009) Diffusion Bonding of γ(TiAl) Alloys: Influence of Composition, Microstructure, and Mechanical Properties. Metallurgical and Materials Transactions A 40:8, pages 1881-1902.
Crossref
D. Peter, G.B. Viswanathan, M.F.-X. Wagner & G. Eggeler. (2009) Grain-boundary sliding in a TiAl alloy with fine-grained duplex microstructure during 750°C creep. Materials Science and Engineering: A 510-511, pages 359-363.
Crossref
D. Peter, J. Pfetzing, M.F.-X. Wagner & G. Eggeler. (2009) Microstructural anisotropy, uniaxial and biaxial creep behavior of Ti–45Al–5Nb–0.2B–0.2C. Materials Science and Engineering: A 510-511, pages 368-372.
Crossref
F. Appel, J.D.H. Paul & M. Oehring. (2009) Phase transformations during creep of a multiphase TiAl-based alloy with a modulated microstructure. Materials Science and Engineering: A 510-511, pages 342-349.
Crossref
Makoto Hasegawa & Hiroshi Fukutomi. (2009) Lamellar orientation control in TiAl base alloys by a two-step compression process at high temperature. Materials Science and Engineering: A 508:1-2, pages 106-113.
Crossref
C.L. Chen, W. Lu, Y.Y. Cui, L.L. He & H.Q. Ye. (2009) High-resolution image simulation of overlap structures in TiAl alloy. Journal of Alloys and Compounds 468:1-2, pages 179-186.
Crossref
W. LU, C. CHEN, L. HE & F. WANG. (2008) Electron microscopy study of different stages of oxidation of Ti-47Al-2Nb-2Cr-0.15B and Ti-45Al-15Nb at 900°C. Journal of Microscopy 231:1, pages 124-133.
Crossref
A. Orlová, K. Kuchařová & A. Dlouhý. (2008) 〈c〉-Component plastic displacements in different microstructures of TiAl-base intermetallics. Materials Science and Engineering: A 483-484, pages 109-112.
Crossref
J.P. Cui, M.L. Sui, Y.Y. Cui & D.X. Li. (2011) Ductile TiAl alloy with a Widmanstätten lamellar structure formed by rapid heating. Journal of Materials Research 23:4, pages 949-953.
Crossref
W. Lu, C.L. Chen, L.L. He, F.H. Wang, J.P. Lin & G.L. Chen. (2008) (S)TEM study of different stages of Ti–45Al–8Nb–0.2W–0.2B–0.02Y alloy oxidation at 900°C. Corrosion Science 50:4, pages 978-988.
Crossref
Wei Lu, Chunlin Chen, Yanjun Xi, Fuhui Wang & Lianlong He. (2007) The oxidation behavior of Ti–46.5Al–5Nb at 900°C. Intermetallics 15:8, pages 989-998.
Crossref
W. Lu, C.L. Chen, F.H. Wang, J.P. Lin, G.L. Chen & L.L. He. (2007) Phase transformation in the nitride layer during the oxidation of TiAl-based alloys. Scripta Materialia 56:9, pages 773-776.
Crossref
Wei Lu, Chunlin Chen, Yanjun Xi, Changyou Guo, Fuhui Wang & Lianlong He. (2007) TEM investigation of the oxide scale of Ti–46.5Al–5Nb at 900°C for 50h. Intermetallics 15:5-6, pages 824-831.
Crossref
Hanliang Zhu, K. Maruyama, D. Y. Seo & P. Au. (2007) Interfacial strengthening by soft phase in lamellar microstructure of TiAl alloys. Applied Physics Letters 90:17.
Crossref
Dong Yi Seo, H. Saari, Peter Au & J. Beddoes. (2007) Microstructure and Creep of γ-TiAl Containing β-Stabilizer. Materials Science Forum 539-543, pages 1543-1548.
Crossref
Chau-Jie Zhan, Tso-Hao Yu & Chun-Hao Koo. (2006) Creep behavior of Ti–40Al–10Nb titanium aluminide intermetallic alloy. Materials Science and Engineering: A 435-436, pages 698-704.
Crossref
Hanliang Zhu, K. Maruyama, D. Y. Seo & P. Au. (2006) Effect of initial microstructure on microstructural instability and creep resistance of XD TiAl alloys. Metallurgical and Materials Transactions A 37:10, pages 3149-3159.
Crossref
M. Lamirand, J. -L. Bonnentien, S. Guérin, G. Ferrière & J. -P. Chevalier. (2006) Effects of interstitial oxygen on microstructure and mechanical properties of Ti-48Al-2Cr-2Nb with fully lamellar and duplex microstructures. Metallurgical and Materials Transactions A 37:8, pages 2369-2378.
Crossref
Hanliang Zhu, D.Y. Seo, K. Maruyama & P. Au. (2006) Effect of lamellar spacing on microstructural instability and creep behavior of a lamellar TiAl alloy. Scripta Materialia 54:12, pages 1979-1984.
Crossref
J. Malaplate, M. Thomas, P. Belaygue, M. Grange & A. Couret. (2006) Primary creep at 750°C in two cast and PM Ti48Al48Cr2Nb2 alloys. Acta Materialia 54:3, pages 601-611.
Crossref
S. Karthikeyan & M.J. Mills. (2005) The role of microstructural stability on compression creep of fully lamellar γ-TiAl alloys. Intermetallics 13:9, pages 985-992.
Crossref
H. Zhang, Z.C. Li, L.L. He & H.Q. Ye. (2005) Reciprocal space analysis of β phase precipitates in a TiAlW alloy. Materials Science and Engineering: A 403:1-2, pages 120-124.
Crossref
Joël Malaplate, Daniel Caillard & Alain Couret. (2005) Correlation between creep activation parameters and microscopic dislocation behaviour in γ TiAl alloys. Materials Science and Engineering: A 400-401, pages 105-108.
Crossref
Hanliang Zhu, K. Maruyama, D. Y. Seo & P. Au. (2005) Microstructural stability of fine-grained fully lamellar XD TiAl alloys by step aging. Metallurgical and Materials Transactions A 36:5, pages 1339-1351.
Crossref
Hanliang Zhu, J. Matsuda & K. Maruyama. (2005) Influence of heating rate in α + γ dual phase field on lamellar morphology and creep property of fully lamellar Ti–48Al alloy. Materials Science and Engineering: A 397:1-2, pages 58-64.
Crossref
Z.X. Li & C.C. Cao. (2005) Effects of minor boron addition on phase transformation and properties of Ti–47.5Al–2Cr–2Nb alloy. Intermetallics 13:3-4, pages 251-256.
Crossref
Hanliang Zhu, Bing Zhao, Zhiqiang Li & Kouichi Maruyama. (2005) Superplasticity and Superplastic Diffusion Bonding of a Fine-Grained TiAl Alloy. MATERIALS TRANSACTIONS 46:10, pages 2150-2155.
Crossref
K. Maruyama, T. Nonaka & H.Y. Kim. (2005) Effects of α2 spacing on creep deformation characteristics of hard oriented PST crystals of TiAl alloy. Intermetallics 13:10, pages 1116-1121.
Crossref
J.A. Jiménez, M. Carsí, G. Frommeyer, S. Knippscher, J. Wittig & O.A. Ruano. (2005) The effect of microstructure on the creep behavior of the Ti–46Al–1Mo–0.2Si alloy. Intermetallics 13:10, pages 1021-1029.
Crossref
S. Karthikeyan, J.H. Moon, G.B. Viswanathan & Michael J. Mills. (2004) Modelling Creep Controlled by the Glide of Jogged Screw Dislocations in TiAl and Ti-Based Alloys. Defect and Diffusion Forum 233-234, pages 127-148.
Crossref
Kouichi Maruyama, Hee Y. Kim & Hanliang Zhu. (2004) Creep of lamellar TiAl alloys: degradation, stabilization and design of lamellar boundaries. Materials Science and Engineering: A 387-389, pages 910-917.
Crossref
A Dlouhý & K Kuchařová. (2004) Creep and microstructure of near-gamma TiAl alloys. Intermetallics 12:7-9, pages 705-711.
Crossref
M. Grange, J. L. Raviart & M. Thomas. (2004) Influence of microstructure on tensile and creep properties of a new castable TiAl-based alloy. Metallurgical and Materials Transactions A 35:7, pages 2087-2102.
Crossref
S. Karthikeyan, G.B. Viswanathan & M.J. Mills. (2004) Evaluation of the jogged-screw model of creep in equiaxed γ-TiAl: identification of the key substructural parameters. Acta Materialia 52:9, pages 2577-2589.
Crossref
Hanliang Zhu, Dongyi Seo, Kouichi Maruyama & Peter Au. (2004) Grain Boundary Morphology and Its Effect on Creep of TiAl Alloys. MATERIALS TRANSACTIONS 45:12, pages 3343-3348.
Crossref
Alain Couret & Joel Malaplate. (2011) Creep of TiAl alloys at 750°C under moderate stress. MRS Proceedings 842.
Crossref
Kouichi Maruyama, Jun Matsuda & Hanliang Zhu. (2011) Increase in γ/α 2 Lamellar Boundary Density and its Effect on Creep Resistance of TiAl Alloy . MRS Proceedings 842.
Crossref
W.J. Zhang & S.C. Deevi. (2003) Analysis of the minimum creep rates of TiAl alloys. Materials Science and Engineering: A 362:1-2, pages 280-291.
Crossref
Hee Y. Kim & K. Maruyama. (2003) Microstructure stability during creep deformation of hard-oriented polysynthetically twinned crystal of TiAl alloy. Metallurgical and Materials Transactions A 34:10, pages 2191-2198.
Crossref
D. Y. Seo, L. Zhao & J. Beddoes. (2003) Primary creep behavior of Ti-48Al-2W as a function of stress and lamellar morphology. Metallurgical and Materials Transactions A 34:10, pages 2177-2190.
Crossref
F. Appel, J. D. H. Paul, M. Oehring, U. Fröbel & U. Lorenz. (2003) Creep behavior of TiAl alloys with enhanced high-temperature capability. Metallurgical and Materials Transactions A 34:10, pages 2149-2164.
Crossref
J. D. H. Paul & F. Appel. (2003) Work-hardening and recovery mechanisms in gamma-based titanium aluminides. Metallurgical and Materials Transactions A 34:10, pages 2103-2111.
Crossref
H. Zhang, L.L. He, H.Q. Ye, L.Z. Zhou, J.T. Guo & V. Lupinc. (2003) Crystallography of β precipitates in a Ti-47Al-2W-0.5Si-0.5B alloy. Materials Letters 57:24-25, pages 3864-3868.
Crossref
Hee Y. Kim, J. Matsuda & K. Maruyama. (2003) Thermal stability of lamellar structure of PST crystal and lamellar boundary design for creep resistant TiAl alloy. Metals and Materials International 9:3, pages 255-263.
Crossref
H. Zhang, L.L. He, H.Q. Ye & D.Y. Seo. (2003) An analysis of growth direction of β phase precipitates in a TiAlW alloy. Scripta Materialia 48:9, pages 1231-1236.
Crossref
H.Y. Kim & K. Maruyama. (2003) Stability of lamellar microstructure of hard orientated PST crystal of TiAl alloy. Acta Materialia 51:8, pages 2191-2204.
Crossref
K. Xia, X. Wu & J. Zhang. (2003) Effects of oxidation and boron addition on tensile creep properties of cast Ti–46Al–2V–1Cr based alloys. Intermetallics 11:4, pages 325-330.
Crossref
W.J. Zhang & S.C. Deevi. (2003) The controlling factors in primary creep of TiAl-base alloys. Intermetallics 11:2, pages 177-185.
Crossref
Subramanian Karthikeyan, Junho Moon, Gopal B. Viswanathan & Michael J. Mills. (2011) Application of a Modified Jogged-Screw Model for Creep of Titanium Aluminides: Evaluation Of The Key Substructural Parameters. MRS Proceedings 779.
Crossref
Subramanian Karthikeyan, Junho Moon, Gopal B. Viswanathan & Michael J. Mills. (2011) Application of a Modified Jogged-Screw Model for Creep of Titanium Aluminides: Evaluation Of The Key Substructural Parameters. MRS Proceedings 778.
Crossref
V. Recina, D. Lundström & B. Karlsson. (2002) Tensile, creep, and low-cycle fatigue behavior of a cast γ-TiAl-based alloy for gas turbine applications. Metallurgical and Materials Transactions A 33:9, pages 2869-2881.
Crossref
Young-Won Kim & Kumar V. Jata. (2002) Crack growth in a nearly fully-lamellar gamma TiAl alloy at 650 °C and 800 °C under constant load conditions. Metallurgical and Materials Transactions A 33:9, pages 2847-2857.
Crossref
R. Yu, L.L. He, Z.Y. Cheng, J. Zhu & H.Q. Ye. (2002) B2 precipitates and distribution of W in a Ti–47Al–2W–0.5Si alloy. Intermetallics 10:7, pages 661-665.
Crossref
W.J Zhang & S.C Deevi. (2002) The controlling creep processes in TiAl alloys at low and high stresses. Intermetallics 10:6, pages 603-611.
Crossref
S. Karthikeyan, G.B. Viswanathan, P.I. Gouma, Vijay K. Vasudevan, Y-W. Kim & M.J. Mills. (2002) Mechanisms and effect of microstructure on creep of TiAl-based alloys. Materials Science and Engineering: A 329-331, pages 621-630.
Crossref
Hee Y Kim, G Wegmann & K Maruyama. (2002) Effect of stress axis orientation on the creep deformation behavior of Ti–48Al polysynthetically twinned (PST) crystals. Materials Science and Engineering: A 329-331, pages 795-801.
Crossref
Hee Y. Kim & Soon H. Hong. (2002) The effect of microstructures on creep behavior of Ti–48Al–2W intermetallic compounds. Materials Science and Engineering: A 329-331, pages 788-794.
Crossref
F. Appel, U. Christoph & M. Oehring. (2002) Creep deformation in two-phase titanium aluminide alloys. Materials Science and Engineering: A 329-331, pages 780-787.
Crossref
X Wu, D Song & K Xia. (2002) Different tensile and compressive creep behaviours in a fully lamellar Ti–44Al–1Mn–2.5Nb–0.15Gd alloy. Materials Science and Engineering: A 329-331, pages 821-827.
Crossref
Seung Jin Yang & Soo Woo Nam. (2002) Investigation of α2/γ phase transformation mechanism under the interaction of dislocation with lamellar interface in primary creep of lamellar TiAl alloys. Materials Science and Engineering: A 329-331, pages 898-905.
Crossref
M Beschliesser, A Chatterjee, A Lorich, W Knabl, H Kestler, G Dehm & H Clemens. (2002) Designed fully lamellar microstructures in a γ-TiAl based alloy: adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800°C. Materials Science and Engineering: A 329-331, pages 124-129.
Crossref
R. Yu, L. L. He & H. Q. Ye. (2002) Effect of W on structural stability of TiAl intermetallics and the site preference of W. Physical Review B 65:18.
Crossref
J.N. Wang, J. Zhu, J.S. Wu & X.W. Du. (2002) Effects of alloying elements on creep of TiAl alloys with a fine lamellar structure. Acta Materialia 50:6, pages 1307-1318.
Crossref
Seung Jin Yang & Soo Woo Nam. (2002) A new experimental technique to investigate the α 2 /γ interface of lamellar TiAl alloy three dimensionally. Intermetallics 10:2, pages 171-175.
Crossref
G. B. Viswanathan, S. Karthikeyan, M. J. Mills & R. W. Hayes. (2002) Application of a modified jogged-screw model for creep of TiAl and α-Ti alloys. Metallurgical and Materials Transactions A 33:2, pages 329-336.
Crossref
Y. Omiya, S. Muto, T. Yamanaka, D. R. Johnson, H. Inui & M. Yamaguchi. (2011) Alignment of the lamellar orientation of multi-component TiAl alloys by directional solidification (DS) and mechanical properties of DS ingots. MRS Proceedings 753.
Crossref
Subramanian Karthikeyan, Gopal B. Viswanathan & Michael J. Mills. (2011) A Revised Jogged-Screw Model For Creep Of Equiaxed γ-TiAl: Identification Of The Key Substructural Parameters.. MRS Proceedings 753.
Crossref
W.R Chen, J Beddoes & L Zhao. (2002) Effect of aging on the tensile and creep behavior of a fully lamellar near γ-TiAl alloy. Materials Science and Engineering: A 323:1-2, pages 306-317.
Crossref
D Srivastava, I.T.H Chang & M.H Loretto. (2001) The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples. Intermetallics 9:12, pages 1003-1013.
Crossref
S Djanarthany, J.-C Viala & J Bouix. (2001) An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Materials Chemistry and Physics 72:3, pages 301-319.
Crossref
Hee Y Kim & K Maruyama. (2001) Deformation structure during creep deformation in soft orientation PST crystals. Intermetallics 9:10-11, pages 929-935.
Crossref
D.R Johnson, H.N Lee, S Muto, T Yamanaka, H Inui & M Yamaguchi. (2001) Microstructure and creep behavior of directionally solidified TiAl-base alloys. Intermetallics 9:10-11, pages 923-927.
Crossref
J. Beddoes, D.Y. Seo, W.R. Chen & L. Zhao. (2001) Relationship between tensile and primary creep properties of near γ-TiAl intermetallics. Intermetallics 9:10-11, pages 915-922.
Crossref
Fritz Appel. (2001) Mechanistic understanding of creep in gamma-base titanium aluminide alloys. Intermetallics 9:10-11, pages 907-914.
Crossref
F. Appel. (2001) Diffusion assisted dislocation climb in intermetallic gamma TiAl. Materials Science and Engineering: A 317:1-2, pages 115-127.
Crossref
X.-W Du, J.N Wang & J Zhu. (2001) The influence of Si alloying on the crept microstructure and property of a TiAl alloy prepared by powder metallurgy. Intermetallics 9:9, pages 745-753.
Crossref
H.Y. Kim & K. Maruyama. (2001) Parallel twinning during creep deformation in soft orientation PST crystal of TiAl alloy. Acta Materialia 49:14, pages 2635-2643.
Crossref
X.-W Du, J.N Wang & J Zhu. (2001) Segregation of alloying elements in a fully lamellar TiAl alloy. Scripta Materialia 45:1, pages 19-24.
Crossref
A Tokar, A Berner & L Levin. (2001) The origin of a new phase observed during quenching of a TiAl-2Fe alloy. Materials Science and Engineering: A 308:1-2, pages 13-18.
Crossref
Ignacio Gil, Maria A. Muñoz-Morris & David G. Morris. (2001) The effect of heat treatments on the microstructural stability of the intermetallic Ti–46.5Al–2W–0.5Si. Intermetallics 9:5, pages 373-385.
Crossref
R. Yu, L.L. He, Z.X. Jin, J.T. Guo, H.Q. Ye & V. Lupinc. (2001) On the orientation relationship between Ti5Si3 precipitates and B2 phase in a Ti-47Al-2W-0.5Si alloy. Scripta Materialia 44:6, pages 911-916.
Crossref
X.-W. Du, Jing Zhu, X. Zhang, Z.Y. Cheng & Y.-W. Kim. (2001) Formation of the creep-induced β2 phase and its influence on deformation in a fully-lamellar TiAl alloy. Intermetallics 9:3, pages 181-187.
Crossref
X.-W. Du, Jing Zhu & Y.-W. Kim. (2001) Microstructural characterization of creep cavitation in a fully-lamellar TiAl alloy. Intermetallics 9:2, pages 137-146.
Crossref
F. Appel & R. Wagner. 2001. Encyclopedia of Materials: Science and Technology. Encyclopedia of Materials: Science and Technology 4246 4264 .
X.-W Du, Jing Zhu, X Zhang, Z.Y Cheng & Y.-W Kim. (2000) Composition change during creep in colonies oriented for easy-slip of Ti–46.5Al–2Cr–3Nb–0.2W. Materials Science and Engineering: A 291:1-2, pages 131-135.
Crossref
D. R. Johnson, Y. Masuda, T. Yamanaka, H. Inui & M. Yamaguchi. (2000) Creep deformation of TiAl-Si alloys with aligned γ/α 2 lamellar microstructures. Metallurgical and Materials Transactions A 31:10, pages 2463-2473.
Crossref
X.-W Du, Jing Zhu, X Zhang, Z.Y Cheng & Y.-W Kim. (2000) Creep induced α2→β2phase transformation in a fully-lamellar TiAl alloy. Scripta Materialia 43:7, pages 597-602.
Crossref
R. Yu, L.L. He, J.T. Guo, H.Q. Ye & V. Lupinc. (2000) Orientation relationship and interfacial structure between ζ-Ti5Si3 precipitates and γ-TiAl intermetallics. Acta Materialia 48:14, pages 3701-3710.
Crossref
F. Appel, M. Oehring & R. Wagner. (2000) Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics 8:9-11, pages 1283-1312.
Crossref
J.G Wang & T.G Nieh. (2000) Creep of a beta phase-containing TiAl alloy. Intermetallics 8:7, pages 737-748.
Crossref
C.E. Wen, K. Yasue, J.G. Lin, Y.G. Zhang & C.Q. Chen. (2000) The effect of lamellar spacing on the creep behavior of a fully lamellar TiAl alloy. Intermetallics 8:5-6, pages 525-529.
Crossref
B. Skrotzki. (2000) Crystallographic aspects of deformation twinning and consequences for plastic deformation processes in γ-TiAl. Acta Materialia 48:4, pages 851-862.
Crossref
Gerhard Wegmann, Tomokazu Suda & Kouichi Maruyama. (2000) Deformation characteristics of polysynthetically twinned (PST) crystals during creep at 1150 K. Intermetallics 8:2, pages 165-177.
Crossref
Fritz Appel & Michael Oehring. (2011) Stress Driven Phase Transformations and Recrystallization Processes in Two-Phase Titanium Aluminide Alloys. MRS Proceedings 652.
Crossref
G. B. Viswanathan, S. Karthikeyan, V. K. Vasudevan & M. J. Mills. (2011) Creep Mechanisms in Equiaxed and Lamellar Ti-48Al. MRS Proceedings 646.
Crossref
S.C. Deevi, W.J. Zhang, C.T. Liu & B.V. Reddy. (2011) Development of a Creep Resistant Tial-Base Alloy. MRS Proceedings 646.
Crossref
Fritz Appel, Helmut Clemens & Michael Oehring. (2011) Recent Advances in Development and Processing of Titanium Aluminide Alloys. MRS Proceedings 646.
Crossref
L Levin, A Tokar, M Talianker & E Evangelista. (1999) Non-equilibrium microstructures in TiAl–2Fe alloy. Intermetallics 7:12, pages 1317-1322.
Crossref
C Woodward & S Kajihara. (1999) Density of thermal vacancies in γ-Ti–Al–M, M=Si, Cr, Nb, Mo, Ta or W. Acta Materialia 47:14, pages 3793-3798.
Crossref
W.R Chen, L Zhao & J Beddoes. (1999) Precipitation hardening of the fully lamellar structure of investment cast Ti-47Al-2Nb-1Mn-0.5Mo-0.5W-0.2Si alloy. Scripta Materialia 41:6, pages 597-603.
Crossref
T Yamanaka, D.R Johnson, H Inui & M Yamaguchi. (1999) Directional solidification of TiAl–Re–Si alloys with aligned γ/α2 lamellar microstructures. Intermetallics 7:7, pages 779-784.
Crossref
J.G Wang, L.M Hsiung & T.G Nieh. (1999) Microstructural instability in a crept fully lamellar TiAl alloy. Intermetallics 7:7, pages 757-763.
Crossref
G.B Viswanathan, V.K Vasudevan & M.J Mills. (1999) Modification of the jogged-screw model for creep of γ-TiAl. Acta Materialia 47:5, pages 1399-1411.
Crossref
M. Oehring, F. Appel, P.J. Ennis & R. Wagner. (1999) A TEM study of deformation processes and microstructural changes during long-term tension creep of a two-phase γ-titanium aluminide alloy. Intermetallics 7:3-4, pages 335-345.
Crossref
F. Appel, U. Sparka & R. Wagner. (1999) Work hardening and recovery of gamma base titanium aluminides. Intermetallics 7:3-4, pages 325-334.
Crossref
J. Beddoes,D. Dudzinski,L. Zhao,. (1999) Primary Creep of a Near γ-TiAl Intermetallic. High Temperature Materials and Processes 18:3, pages 173-184.
Crossref
W.R. Chen, J. Triantafillou, J. Beddoes & L. Zhao. (1999) Effect of fully lamellar morphology on creep of a near γ-TiAl intermetallic. Intermetallics 7:2, pages 171-178.
Crossref
F. Appel, M. Oehring & P.J. Ennis. (2011) Phase Evolution and Transformations During Long-Term Creep of Two-Phase Titanium Aluminides. MRS Proceedings 580.
Crossref
T.T. Cheng, M.R. Willis & I.P. Jones. (1999) Effects of major alloying additions on the microstructure and mechanical properties of γ-TiAl. Intermetallics 7:1, pages 89-99.
Crossref
Birgit Skrotzki, Mahinur Ünal & Gunther Eggeler. (1998) On the role of mechanical twinning in creep of a near-γ TiAl-alloy with duplex microstructure. Scripta Materialia 39:8, pages 1023-1029.
Crossref
J.G. Wang, L.M. Hsiung & T.G. Nieh. (1998) Formation of deformation twins in a crept lamellar TiAl alloy. Scripta Materialia 39:7, pages 957-962.
Crossref
F Herrouin, D Hu, P Bowen & I.P Jones. (1998) Microstructural changes during creep of a fully lamellar TiAl alloy. Acta Materialia 46:14, pages 4963-4972.
Crossref
Hee Y. Kim, Woong H. Sohn & Soon H. Hong. (1998) High temperature deformation of Ti–(46–48)Al–2W intermetallic compounds. Materials Science and Engineering: A 251:1-2, pages 216-225.
Crossref
T.A. Parthasarathy, M.G. Mendiratta & D.M. Dimiduk. (1998) Flow behavior of PST and fully lamellar polycrystals of Ti–48Al in the microstrain regime. Acta Materialia 46:11, pages 4005-4016.
Crossref
S.L. Kampe, J. Christodoulou, C.R. Feng, L. Christodoulou & D.J. Michel. (1998) The effect of matrix microstructure and reinforcement shape on the creep deformation of near-γ titanium aluminide composites. Acta Materialia 46:8, pages 2881-2894.
Crossref
F. Appel & R. Wagner. (1998) Microstructure and deformation of two-phase γ-titanium aluminides. Materials Science and Engineering: R: Reports 22:5, pages 187-268.
Crossref
M. A. Morris & M. Leboeuf. (2011) Quantitative analysis of microstructures produced by creep of Ti–48Al–2Cr–2Nb–1B: Thermal and athermal mechanisms. Journal of Materials Research 13:3, pages 625-639.
Crossref
T.A. Parthasarathy, M. Keller & M.G. Mendiratta. (1998) The Effect of Lamellar Lath Spacing on the Creep Behavior of Ti-47at% Al. Scripta Materialia 38:7, pages 1025-1031.
Crossref
J.N Wang & T.G Nieh. (1998) The role of ledges in creep of TiAl alloys with fine lamellar structures. Acta Materialia 46:6, pages 1887-1901.
Crossref
J. G. Wang, L. M. Hsiung & T. G. Nieh. (2011) Fragmentation of α2 Plates in a Fully Lamellar TiAl During Creep. MRS Proceedings 552.
Crossref
J. Beddoes, L. Zhao, W. R. Chen & X. Du. (2011) Creep of Fully Lamellar Near γ-TiAl Intermetallics. MRS Proceedings 552.
Crossref
P.I Gouma, S.J Davey & M.H Loretto. (1998) Microstructure and mechanical properties of a TiAl-based powder alloy containing carbon. Materials Science and Engineering: A 241:1-2, pages 151-158.
Crossref
Min Lu & K. J. Hemker. (1998) Microstructural evolution during creep of single-phase gamma TiAl. Metallurgical and Materials Transactions A 29:1, pages 99-104.
Crossref
W.M. Yin, V. Lupinc & L. Battezzati. (1997) Microstructure study of a γ-TiAl based alloy containing W and Si. Materials Science and Engineering: A 239-240, pages 713-721.
Crossref
M.A. Morris & M. Leboeuf. (1997) Analysis of thermal and athermal deformation mechanisms during creep of γ-TiAl alloys. Materials Science and Engineering: A 239-240, pages 429-437.
Crossref
W.J. Zhang, L. Francesconi, E. Evangelista & G.L. Chen. (1997) Characterization of widmanstätten laths and interlocking boundaries in fully-lamellar TiAl-base alloy. Scripta Materialia 37:5, pages 627-633.
Crossref
T.A. Parthasarathy, M.G. Mendiratta & D.M. Dimiduk. (1997) Observations on the creep behavior of fully-lamellar polycrystalline TiAl: Identification of critical effects. Scripta Materialia 37:3, pages 315-321.
Crossref
S. Spigarelli, L. Francesconi, C. Guardamagna & E. Evangelista. (1997) Creep characterization of a duplex Ti-Al base alloy at 700 and 750 °C. Materials Science and Engineering: A 234-236, pages 378-381.
Crossref
F. Appel, U. Lorenz, M. Oehring, U. Sparka & R. Wagner. (1997) Thermally activated deformation mechanisms in micro-alloyed two-phase titanium amminide alloys. Materials Science and Engineering: A 233:1-2, pages 1-14.
Crossref
C. Suryanarayana, F. H. Froes & G. E. Korth. (1997) Compaction and characterization of mechanically alloyed nanocrystalline titanium aluminides. Metallurgical and Materials Transactions A 28:2, pages 293-302.
Crossref
M.A. Morris & M. Leboeuf. (1997) II. Deformed microstructures during creep of TiAl alloys: role of mechanical twinning. Intermetallics 5:5, pages 339-354.
Crossref
M.A. Morris & T. Lipe. (1997) I. Creep deformation of duplex and lamellar TiAl alloys. Intermetallics 5:5, pages 329-337.
Crossref
C. Suryanarayana. (1996) Electron microscopic characterization of a γ-TiAl alloy. Materials Letters 29:4-6, pages 281-284.
Crossref
J. Beddoes, J. Triantafillou & L. Zhao. (2011) Effect of Stress on Creep of Lamellar Near γ-TiAl. MRS Proceedings 460.
Crossref
F. Herrouin, P. Bowen & I. P. Jones. (2011) Creep Deformation of a Fully Lamellar Gamma Based Titanium Aluminide Alloy. MRS Proceedings 460.
Crossref
M. A. Morris & T. Lipe. (2011) Deformation Mechanisms Responsible for the Creep Resistance of Ti-Al Alloys. MRS Proceedings 460.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.