70
Views
67
CrossRef citations to date
0
Altmetric
Articles

Recrystallization in Hot Working and Creep

Pages 161-167 | Published online: 18 Jul 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (10)

Ruihao Li, Haijun Li, Lin Wang, Guodong Wang, Jie Li & Jinbo Li. (2023) Influence of hot-core heavy reduction rolling on microstructure uniformity of casting billet. Ironmaking & Steelmaking 50:3, pages 273-285.
Read now
T. Richeton, X. Chen & S. Berbenni. (2020) Misorientation dependence of the grain boundary migration rate: role of elastic anisotropy. Philosophical Magazine 100:19, pages 2436-2457.
Read now
X. H. Deng, L. W. Zhang & C. X. Yue. (2009) Influence of hot working parameters on dynamic recrystallisation of GCr15 bearing steel. Materials Research Innovations 13:4, pages 436-440.
Read now
Y. V. R. K. Prasad & T. Seshacharyulu. (1998) Modelling of hot deformation for microstructural control. International Materials Reviews 43:6, pages 243-258.
Read now
P. Peczak & M.J. Luton. (1993) The effect of nucleation models on dynamic recrystallization I. Homogeneous stored energy distribution. Philosophical Magazine B 68:1, pages 115-144.
Read now
S. Wierzbinski, A. Korbel & J. J. Jonas. (1992) Structural and mechanical aspects of high temperature deformation of polycrystalline nickel. Materials Science and Technology 8:2, pages 153-158.
Read now
T. Sakai & M. Ohashi. (1990) Dislocation substructures developed during dynamic recrystallisation in polycrystalline nickel. Materials Science and Technology 6:12, pages 1251-1257.
Read now
T. Sakai, Y. Nagao, M. Ohashi & J. J. Jonas. (1986) Flow stress and substructural change during transient dynamic recrystallization of nickel. Materials Science and Technology 2:7, pages 659-665.
Read now
G. Gottstein, D. Zabardjadi & H. Mecking. (1979) Dynamic recrystallization in tension-deformed copper single crystals. Metal Science 13:3-4, pages 223-227.
Read now

Articles from other publishers (57)

Yaocheng Zhang, Li Yang, Ziyun Fan, Song Pang & Wei Chen. (2023) Evaluation of tensile creep behavior of spray formed and extruded 7075 aluminum alloy by equivalent stress. Journal of Materials Research and Technology 22, pages 1476-1490.
Crossref
Yu-Ying He, Sheng-Wen Bai & Gang Fang. (2022) Coupled CA-FE simulation for dynamic recrystallization of magnesium alloy during hot extrusion. Journal of Magnesium and Alloys 10:3, pages 769-785.
Crossref
Frank Montheillet. (2021) Influence of Boundary Migration Induced Softening on the Steady State of Discontinuous Dynamic Recrystallization. Materials 14:13, pages 3531.
Crossref
Xiang Xu, Jun Zhang, José Outeiro, Binbin Xu & Wanhua Zhao. (2020) Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining. Journal of Materials Processing Technology 286, pages 116834.
Crossref
Jun Zhang, Xiang Xu, José Outeiro, Hongguang Liu & Wanhua Zhao. (2020) Simulation of Grain Refinement Induced by High-Speed Machining of OFHC Copper Using Cellular Automata Method. Journal of Manufacturing Science and Engineering 142:9.
Crossref
Sojiro Uemura, Shiho Yamamoto Kamata, Kyosuke Yoshimi & Sadahiro Tsurekawa. (2020) Microstructural evolution during high-temperature tensile creep at 1,500°C of a MoSiBTiC alloy. High Temperature Materials and Processes 39:1, pages 136-145.
Crossref
Xinxin Sun, Hongwei Li & Mei Zhan. (2019) Full-stage prediction of discontinuous dynamic recrystallization of a titanium alloy through a sub-mesh internal state variables method. Modelling and Simulation in Materials Science and Engineering 27:1, pages 015004.
Crossref
Frank Montheillet. (2018) Some Facts We Can Learn from Analytical Modeling of DDRX in Pure Metals and Solid Solutions. Metals 8:10, pages 789.
Crossref
Qianhong Xu, Chi Zhang, Liwen Zhang, Wenfei Shen & Qing Yang. (2018) Cellular Automaton Modeling of Dynamic Recrystallization of Nimonic 80A Superalloy Based on Inhomogeneous Distribution of Dislocations Inside Grains. Journal of Materials Engineering and Performance 27:9, pages 4955-4967.
Crossref
Z.C. Sun, H.L. Wu, J. Cao & Z.K. Yin. (2018) Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method. International Journal of Plasticity 106, pages 73-87.
Crossref
David Piot, Guillaume Smagghe, John Joseph Jonas, Christophe Desrayaud, Frank Montheillet, Gilles Perrin, Aurore Montouchet & Guillaume Kermouche. (2018) A semitopological mean-field model of discontinuous dynamic recrystallization. Journal of Materials Science 53:11, pages 8554-8566.
Crossref
Avik Samanta, Ninggang Shen, Haipeng Ji, Weiming Wang, Jingjing Li & Hongtao Ding. (2018) Cellular Automaton Simulation of Microstructure Evolution for Friction Stir Blind Riveting. Journal of Manufacturing Science and Engineering 140:3.
Crossref
Tikendra Nath Verma, Moon Banerjee & Prerana Nashine. (2018) Hot Compression Test of AA 2014 aluminum Alloy with Microstructure Analysis and Processing Maps. Materials Today: Proceedings 5:2, pages 7247-7255.
Crossref
Qin Qin, Ming-Liang Tian & Peng Zhang. (2017) Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material. Materials 10:4, pages 407.
Crossref
Z.X. Zhang, S.J. Qu, A.H. Feng & J. Shen. (2017) Achieving grain refinement and enhanced mechanical properties in Ti–6Al–4V alloy produced by multidirectional isothermal forging. Materials Science and Engineering: A 692, pages 127-138.
Crossref
Muhammad Imran & Markus Bambach. (2017) A new model for dynamic recrystallization under hot working conditions based on critical dislocation gradients. Procedia Engineering 207, pages 2107-2112.
Crossref
Y.C. Lin, Yan-Xing Liu, Ming-Song Chen, Ming-Hui Huang, Xiang Ma & Zhi-Li Long. (2016) Study of static recrystallization behavior in hot deformed Ni-based superalloy using cellular automaton model. Materials & Design 99, pages 107-114.
Crossref
J. Orend, F. Hagemann, F.B. Klose, B. Maas & H. Palkowski. (2015) A new unified approach for modeling recrystallization during hot rolling of steel. Materials Science and Engineering: A 647, pages 191-200.
Crossref
Y Mellbin, H Hallberg & M Ristinmaa. (2015) A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations. Modelling and Simulation in Materials Science and Engineering 23:4, pages 045011.
Crossref
Chuan WU, He YANG & Hong-wei LI. (2014) Simulated and experimental investigation on discontinuous dynamic recrystallization of a near-α TA15 titanium alloy during isothermal hot compression in β single-phase field. Transactions of Nonferrous Metals Society of China 24:6, pages 1819-1829.
Crossref
Ho Won Lee, Seong-Hoon Kang & Youngseon Lee. (2014) Prediction of microstructure evolution during hot forging using grain aggregate model for dynamic recrystallization. International Journal of Precision Engineering and Manufacturing 15:6, pages 1055-1062.
Crossref
Markus Bambach. (2014) Re-Meshing in Finite Element Simulations of Hot Working Including a Microstructural Evolution Model. Key Engineering Materials 611-612, pages 505-512.
Crossref
Ho Won Lee, Young Seon Lee & Seong Hoon Kang. (2014) Microstructure Prediction during Hot Deformation Using New Dynamic Recrystallization Model and Finite Element Analysis. Key Engineering Materials 611-612, pages 483-488.
Crossref
K. Graetz, C. Miessen & G. Gottstein. (2014) Analysis of steady-state dynamic recrystallization. Acta Materialia 67, pages 58-66.
Crossref
Ke Lu Wang, Shi Qiang Lu, Xin Li & Xian Juan Dong. (2013) Simulation of Dynamic Recrystallization for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy in β Processed Using Cellular Automaton. Advanced Materials Research 634-638, pages 1781-1785.
Crossref
N. Yazdipour & P.D. Hodgson. (2012) Modelling post-deformation softening kinetics of 304 austenitic stainless steel using cellular automata. Computational Materials Science 54, pages 56-65.
Crossref
Ke Lu Wang, M.W. Fu & Jian Lu. (2010) FEM-Based Modeling of Dynamic Recrystallization of AISI 52100 Steel Using Cellular Automaton Method. Key Engineering Materials 447-448, pages 406-411.
Crossref
Zhong-tang Wang, Shi-hong Zhang, Ming Cheng, De-fu Li & Xiao-hong Yang. (2010) Kinematics and Dynamics Model of GH4169 Alloy for Thermal Deformation. Journal of Iron and Steel Research International 17:7, pages 75-78.
Crossref
Ho Won Lee & Yong-Taek Im. (2010) Cellular Automata Modeling of Grain Coarsening and Refinement during the Dynamic Recrystallization of Pure Copper. MATERIALS TRANSACTIONS 51:9, pages 1614-1620.
Crossref
D. Peter, G.B. Viswanathan, M.F.-X. Wagner & G. Eggeler. (2009) Grain-boundary sliding in a TiAl alloy with fine-grained duplex microstructure during 750°C creep. Materials Science and Engineering: A 510-511, pages 359-363.
Crossref
M. Frommert & G. Gottstein. (2009) Mechanical behavior and microstructure evolution during steady-state dynamic recrystallization in the austenitic steel 800H. Materials Science and Engineering: A 506:1-2, pages 101-110.
Crossref
Hanlin Ding, Liufa Liu, Shigeharu Kamado, Wenjiang Ding & Yo Kojima. (2009) Investigation of the hot compression behavior of the Mg–9Al–1Zn alloy using EBSP analysis and a cellular automata simulation. Modelling and Simulation in Materials Science and Engineering 17:2, pages 025009.
Crossref
F. Montheillet, O. Lurdos & G. Damamme. (2009) A grain scale approach for modeling steady-state discontinuous dynamic recrystallization. Acta Materialia 57:5, pages 1602-1612.
Crossref
C. Sommitsch & W. Mitter. (2006) On modelling of dynamic recrystallisation of fcc materials with low stacking fault energy. Acta Materialia 54:2, pages 357-375.
Crossref
Frank Montheillet. 2005. Moving Interfaces in Crystalline Solids. Moving Interfaces in Crystalline Solids 203 256 .
Baohui Tian, Christoph Lind, Erhard Schafler & Oskar Paris. (2004) Evolution of microstructures during dynamic recrystallization and dynamic recovery in hot deformed Nimonic 80a. Materials Science and Engineering: A 367:1-2, pages 198-204.
Crossref
F. Montheillet & J. J. Jonas. 2003. digital Encyclopedia of Applied Physics. digital Encyclopedia of Applied Physics.
R. Ding & Z.X. Guo. (2002) Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach. Computational Materials Science 23:1-4, pages 209-218.
Crossref
R Ding & Z.X Guo. (2001) Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Materialia 49:16, pages 3163-3175.
Crossref
Birgit Skrotzki, Thorsten Rudolf, Antonin Dlouhy & Gunther Eggeler. (1998) Microstructural evidence for dynamic recrystallization during creep of a duplex near-γ TiAl-alloy. Scripta Materialia 39:11, pages 1545-1551.
Crossref
O.N. Senkov, J.J. Jonas & F.H. Froes. (1998) Steady-state flow controlled by the velocity of grain-boundary migration. Materials Science and Engineering: A 255:1-2, pages 49-53.
Crossref
E.I. Poliak & J.J. Jonas. (1996) A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Materialia 44:1, pages 127-136.
Crossref
P. Peczak. (1995) A Monte Carlo study of influence of deformation temperature on dynamic recrystallization. Acta Metallurgica et Materialia 43:3, pages 1279-1291.
Crossref
A. Dlouhy, G. Eggeler & N. Merk. (1995) A micromechanical model for creep in short fibre reinforced aluminium alloys. Acta Metallurgica et Materialia 43:2, pages 535-550.
Crossref
Katsuyoshi Michibayashi. (1993) Syntectonic development of a strain-independent steady-state grain size during mylonitization. Tectonophysics 222:2, pages 151-164.
Crossref
P. Peczak & M.J. Luton. (1993) A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization. Acta Metallurgica et Materialia 41:1, pages 59-71.
Crossref
A.D. Rollett, M.J. Luton & D.J. Srolovitz. (1992) Microstructural simulation of dynamic recrystallization. Acta Metallurgica et Materialia 40:1, pages 43-55.
Crossref
J.D. L'ecuyer & G. L'espérance. (1989) Precipitation interactions with dynamic recrystallization of a hsla steel. Acta Metallurgica 37:4, pages 1023-1031.
Crossref
M. Hatherly, A.S. Malin, C.M. Carmichael, F.J. Humphreys & J. Hirsch. (1986) Deformation processes in hot worked copper and α brass. Acta Metallurgica 34:11, pages 2247-2257.
Crossref
H. J. Mcqueen & J. J. Jonas. (1984) Recent advances in hot working: Fundamental dynamic softening mechanisms. Journal of Applied Metalworking 3:3, pages 233-241.
Crossref
T. Sakai & J.J. Jonas. (1984) Overview no. 35 Dynamic recrystallization: Mechanical and microstructural considerations. Acta Metallurgica 32:2, pages 189-209.
Crossref
G. Gottstein & U.F. Kocks. (1983) Dynamic recrystallization and dynamic recovery in <111> single crystals of nickel and copper. Acta Metallurgica 31:1, pages 175-188.
Crossref
S.H. White, S.E. Burrows, J. Carreras, N.D. Shaw & F.J. Humphreys. (1980) On mylonites in ductile shear zones. Journal of Structural Geology 2:1-2, pages 175-187.
Crossref
A. A. Aly, G. N. Podus & A. F. Sirenko. (1979) Thermoactivated creep and stress relaxation in Cu and Al. Physica Status Solidi (a) 53:2, pages 461-467.
Crossref
W Roberts & B Ahlblom. (1978) A nucleation criterion for dynamic recrystallization during hot working. Acta Metallurgica 26:5, pages 801-813.
Crossref
S. White. (1977) Geological significance of recovery and recrystallization processes in quartz. Tectonophysics 39:1-3, pages 143-170.
Crossref
Rolf Sandström & Rune Lagneborg. (1975) A model for hot working occurring by recrystallization. Acta Metallurgica 23:3, pages 387-398.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.